Suppr超能文献

CMSAF-Net:用于梨树病害精准分割的具有增强解码器的集成网络设计

CMSAF-Net: integrative network design with enhanced decoder for precision segmentation of pear leaf diseases.

作者信息

Ding Jie, Xu Wenwen, Shu Xin, Wang Wenyu, Chen Shuxia, Wu Yunzhi

机构信息

School of Information and Artificial Intelligence, Anhui Agricultural University, West Changjiang Road, 230036, Hefei, AH, China.

Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, West Changjiang Road, 230036, Hefei, AH, China.

出版信息

Plant Methods. 2025 May 30;21(1):74. doi: 10.1186/s13007-025-01392-7.

Abstract

Pear leaf diseases represent one of the major challenges in agriculture, significantly affecting fruit quality and reducing overall yield. With the advancement of precision agriculture, accurate identification and segmentation of diseased areas are critical for targeted disease management and optimizing crop production. To address these issues, this study proposes a novel segmentation model, CMSAF-Net, for pear leaf diseases. CMSAF-Net integrates a Multi-scale Convolutional Attention Module (MBCA), a Self-adaptive Attention-augmented Upsampling Module (SAUP), and a Cross-layer Feature Alignment Module (CGAG) to enhance feature extraction, preserve edge information in complex disease regions, and optimize cross-layer information fusion. Additionally, CMSAF-Net incorporates pre-trained weights to leverage prior knowledge, accelerating convergence and improving segmentation accuracy. On a self-constructed dataset containing three types of pear leaf diseases, experimental results demonstrate that CMSAF-Net achieves 88.65%, 93.36%, and 93.86% in key metrics of MIoU, MPA, and Dice, respectively. Compared with mainstream models such as Unet++, DeepLabv3+, U -Net, and TransUNet, CMSAF-Net exhibits significant performance improvements, with MIoU increases of 2.45%, 3.86%, 2.21%, and 8.28%, respectively. This study highlights CMSAF-Net's potential for large-scale disease monitoring in intelligent agriculture, providing an efficient segmentation solution with substantial theoretical and practical implications.

摘要

梨叶病害是农业面临的主要挑战之一,严重影响果实品质并降低总产量。随着精准农业的发展,准确识别和分割病害区域对于针对性病害管理和优化作物产量至关重要。为了解决这些问题,本研究提出了一种用于梨叶病害的新型分割模型CMSAF-Net。CMSAF-Net集成了多尺度卷积注意力模块(MBCA)、自适应注意力增强上采样模块(SAUP)和跨层特征对齐模块(CGAG),以增强特征提取、保留复杂病害区域的边缘信息并优化跨层信息融合。此外,CMSAF-Net结合了预训练权重以利用先验知识,加速收敛并提高分割精度。在一个包含三种梨叶病害的自建数据集上,实验结果表明,CMSAF-Net在MIoU、MPA和Dice等关键指标上分别达到了88.65%、93.36%和93.86%。与Unet++、DeepLabv3+、U-Net和TransUNet等主流模型相比,CMSAF-Net表现出显著的性能提升,MIoU分别提高了2.45%、3.86%、2.21%和8.28%。本研究突出了CMSAF-Net在智能农业大规模病害监测中的潜力,提供了一种具有重要理论和实际意义的高效分割解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c5/12124004/770b56512f3a/13007_2025_1392_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验