Suppr超能文献

FFAE-UNet:一种基于U型架构的高效梨叶病害分割网络。

FFAE-UNet: An Efficient Pear Leaf Disease Segmentation Network Based on U-Shaped Architecture.

作者信息

Wang Wenyu, Ding Jie, Shu Xin, Xu Wenwen, Wu Yunzhi

机构信息

Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei 230036, China.

School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China.

出版信息

Sensors (Basel). 2025 Mar 12;25(6):1751. doi: 10.3390/s25061751.

Abstract

The accurate pest control of pear tree diseases is an urgent need for the realization of smart agriculture, with one of the key challenges being the precise segmentation of pear leaf diseases. However, existing methods show poor segmentation performance due to issues such as the small size of certain pear leaf disease areas, blurred edge details, and background noise interference. To address these problems, this paper proposes an improved U-Net architecture, FFAE-UNet, for the segmentation of pear leaf diseases. Specifically, two innovative modules are introduced in FFAE-UNet: the Attention Guidance Module (AGM) and the Feature Enhancement Supplementation Module (FESM). The AGM module effectively suppresses background noise interference by reconstructing features and accurately capturing spatial and channel relationships, while the FESM module enhances the model's responsiveness to disease features at different scales through channel aggregation and feature supplementation mechanisms. Experimental results show that FFAE-UNet achieves 86.60%, 92.58%, and 91.85% in MIoU, Dice coefficient, and MPA evaluation metrics, respectively, significantly outperforming current mainstream methods. FFAE-UNet can assist farmers and agricultural experts in more effectively evaluating and managing diseases, thereby enabling precise disease control and management.

摘要

梨树病害的精准防治是实现智慧农业的迫切需求,其中关键挑战之一是梨树叶部病害的精确分割。然而,由于某些梨树叶部病害区域面积小、边缘细节模糊以及背景噪声干扰等问题,现有方法的分割性能较差。为解决这些问题,本文提出一种改进的U-Net架构FFAE-UNet,用于梨树叶部病害的分割。具体而言,FFAE-UNet中引入了两个创新模块:注意力引导模块(AGM)和特征增强补充模块(FESM)。AGM模块通过特征重构有效抑制背景噪声干扰,并准确捕捉空间和通道关系,而FESM模块通过通道聚合和特征补充机制增强模型对不同尺度病害特征的响应能力。实验结果表明,FFAE-UNet在MIoU、Dice系数和MPA评估指标上分别达到了86.60%、92.58%和91.85%,显著优于当前主流方法。FFAE-UNet可以帮助农民和农业专家更有效地评估和管理病害,从而实现精准的病害防治和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deea/11945565/c88d55621ffc/sensors-25-01751-g001.jpg

相似文献

1
FFAE-UNet: An Efficient Pear Leaf Disease Segmentation Network Based on U-Shaped Architecture.
Sensors (Basel). 2025 Mar 12;25(6):1751. doi: 10.3390/s25061751.
2
MFBP-UNet: A Network for Pear Leaf Disease Segmentation in Natural Agricultural Environments.
Plants (Basel). 2023 Sep 8;12(18):3209. doi: 10.3390/plants12183209.
3
AC-UNet: an improved UNet-based method for stem and leaf segmentation in Betula luminifera.
Front Plant Sci. 2023 Nov 27;14:1268098. doi: 10.3389/fpls.2023.1268098. eCollection 2023.
5
STC-UNet: renal tumor segmentation based on enhanced feature extraction at different network levels.
BMC Med Imaging. 2024 Jul 19;24(1):179. doi: 10.1186/s12880-024-01359-5.
7
Research of segmentation recognition of small disease spots on apple leaves based on hybrid loss function and CBAM.
Front Plant Sci. 2023 Jun 6;14:1175027. doi: 10.3389/fpls.2023.1175027. eCollection 2023.
8
MLFA-UNet: A multi-level feature assembly UNet for medical image segmentation.
Methods. 2024 Dec;232:52-64. doi: 10.1016/j.ymeth.2024.10.010. Epub 2024 Oct 29.
10
An Effective Image-Based Tomato Leaf Disease Segmentation Method Using MC-UNet.
Plant Phenomics. 2023 May 15;5:0049. doi: 10.34133/plantphenomics.0049. eCollection 2023.

本文引用的文献

1
Directional Connectivity-based Segmentation of Medical Images.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:11525-11535. doi: 10.1109/cvpr52729.2023.01109. Epub 2023 Aug 22.
2
An Effective Image-Based Tomato Leaf Disease Segmentation Method Using MC-UNet.
Plant Phenomics. 2023 May 15;5:0049. doi: 10.34133/plantphenomics.0049. eCollection 2023.
3
Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease.
Front Plant Sci. 2022 Oct 7;13:1031748. doi: 10.3389/fpls.2022.1031748. eCollection 2022.
4
Deep Learning-Based Segmentation and Quantification of Cucumber Powdery Mildew Using Convolutional Neural Network.
Front Plant Sci. 2019 Feb 15;10:155. doi: 10.3389/fpls.2019.00155. eCollection 2019.
5
6
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验