Yang Ziyun, Farsiu Sina
Duke University, Durham, NC, United States.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:11525-11535. doi: 10.1109/cvpr52729.2023.01109. Epub 2023 Aug 22.
Anatomical consistency in biomarker segmentation is crucial for many medical image analysis tasks. A promising paradigm for achieving anatomically consistent segmentation via deep networks is incorporating pixel connectivity, a basic concept in digital topology, to model inter-pixel relationships. However, previous works on connectivity modeling have ignored the rich channel-wise directional information in the latent space. In this work, we demonstrate that effective disentanglement of directional sub-space from the shared latent space can significantly enhance the feature representation in the connectivity-based network. To this end, we propose a directional connectivity modeling scheme for segmentation that decouples, tracks, and utilizes the directional information across the network. Experiments on various public medical image segmentation benchmarks show the effectiveness of our model as compared to the state-of-the-art methods. Code is available at https://github.com/Zyun-Y/DconnNet.
生物标志物分割中的解剖一致性对于许多医学图像分析任务至关重要。通过深度网络实现解剖学上一致分割的一个有前景的范例是纳入像素连通性,这是数字拓扑中的一个基本概念,用于对像素间关系进行建模。然而,先前关于连通性建模的工作忽略了潜在空间中丰富的通道方向信息。在这项工作中,我们证明从共享潜在空间中有效解耦方向子空间可以显著增强基于连通性的网络中的特征表示。为此,我们提出了一种用于分割的方向连通性建模方案,该方案在整个网络中解耦、跟踪并利用方向信息。在各种公共医学图像分割基准上的实验表明,与现有最先进方法相比,我们的模型是有效的。代码可在https://github.com/Zyun-Y/DconnNet获取。