Jo Youngmin, Yim Donghyun, Park Chan E, Yong Insung, Lee Jongbeom, Ahn Kwang Ho, Yang Chanhee, Chang Jae-Byum, Kim Taek-Soo, Shin Jennifer Hyunjong, Kim Taeyoon, Kim Pilnam
Department of Bio and Brain Engineering, KAIST, Daejeon 34141, South Korea.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
Acta Biomater. 2025 Jul 1;201:360-371. doi: 10.1016/j.actbio.2025.05.069. Epub 2025 May 29.
Epithelium layer stands on a membrane, called basement membrane (BM) which serves as a boundary with the underlying stroma. While most studies on morphogenesis have focused on the epithelium-BM complex, the role of the BM-stroma interface remains poorly understood. In this study, we demonstrate how forces originating from the stromal layer contribute to tissue morphogenesis. Folds focalization at the BM-stroma interface is driven by mechanical instability, which arises from the fluidity of the stroma and the polarized tractional forces acting on the rigid membrane of stromal cell condensates. Stromal cells move towards the folded region by topographic guidance, while the concentration of forces intensifies. Through this process, stromal cells and folds engage in recursive interactions, resulting in the formation of a cellular network. Our observation provides a rational mechanism for pattern formation in a multi-layered living tissue. STATEMENT OF SIGNIFICANCE: This study addresses a crucial gap in understanding how stromal cells interact with the basement membrane to lead tissue surface morphogenesis. By developing a collagen-based, nanometer-thick engineered basement membrane, we demonstrate that the stromal cells exert traction forces on the basement membrane to fold. The folding process guides stromal cell migration, which in turn induces further folding in a recursive manner. The direction of folding, invagination or evagination, is determined by the stiffness difference between the stroma and the basement membrane. This model offers better understanding about how the basement membrane interacts with stromal cells to make evaginated network structures on tissue surface.
上皮层位于一层称为基底膜(BM)的膜上,基底膜作为与下方基质的边界。虽然大多数关于形态发生的研究都集中在上皮层 - 基底膜复合体上,但基底膜 - 基质界面的作用仍知之甚少。在本研究中,我们展示了源自基质层的力如何促进组织形态发生。基底膜 - 基质界面处的褶皱聚焦是由机械不稳定性驱动的,这种不稳定性源于基质的流动性以及作用于基质细胞凝聚物刚性膜上的极化牵引力。基质细胞通过地形引导向折叠区域移动,同时力的集中加剧。通过这个过程,基质细胞和褶皱进行递归相互作用,从而形成细胞网络。我们的观察为多层活组织中的模式形成提供了一个合理的机制。重要性声明:本研究解决了在理解基质细胞如何与基底膜相互作用以引导组织表面形态发生方面的一个关键空白。通过开发一种基于胶原蛋白的、纳米厚的工程化基底膜,我们证明基质细胞对基底膜施加牵引力使其折叠。折叠过程引导基质细胞迁移,进而以递归方式诱导进一步折叠。折叠的方向,即内陷或外翻,由基质和基底膜之间的刚度差异决定。该模型有助于更好地理解基底膜如何与基质细胞相互作用以在组织表面形成外翻网络结构。