文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

息肉大小:用于人工智能驱动的息肉大小测量的精确内镜数据集。

Polyp-Size: A Precise Endoscopic Dataset for AI-Driven Polyp Sizing.

作者信息

Song Yiming, Du Sijia, Wang Ruilan, Liu Fei, Lin Xiaolu, Chen Jinnan, Li Zeyu, Li Zhao, Yang Liuyi, Zhang Zhengjie, Yan Hao, Zhang Qingwei, Qian Dahong, Li Xiaobo

机构信息

Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Sci Data. 2025 May 31;12(1):918. doi: 10.1038/s41597-025-05251-x.


DOI:10.1038/s41597-025-05251-x
PMID:40450075
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12126491/
Abstract

Colorectal cancer often arises from precancerous polyps, where accurate size assessment is vital for clinical decisions but challenged by subjective methods. While artificial intelligence (AI) has shown promise in improving the accuracy of polyp size estimation, its development depends on large, meticulously annotated datasets. We present Polyp-Size, a dataset of 42 high-resolution white-light colonoscopy videos with polyp sizes precisely measured post-resection using vernier calipers to submillimeter precision. Unlike existing datasets primarily focused on polyp detection or segmentation, Polyp-Size offers validated size annotations, diverse polyp features (Paris classification, anatomical location and histological type), and standardized video formats, enabling robust AI models for size estimation. By making this resource publicly available, we aim to foster research collaboration and innovation in automated polyp measurement to ultimately improve clinical practice.

摘要

结直肠癌通常起源于癌前息肉,准确的大小评估对于临床决策至关重要,但主观方法对此提出了挑战。虽然人工智能(AI)在提高息肉大小估计的准确性方面已显示出前景,但其发展依赖于大量精心注释的数据集。我们展示了Polyp-Size,这是一个包含42个高分辨率白光结肠镜检查视频的数据集,息肉大小在切除后使用游标卡尺精确测量至亚毫米精度。与现有主要专注于息肉检测或分割的数据集不同,Polyp-Size提供了经过验证的大小注释、多样的息肉特征(巴黎分类、解剖位置和组织学类型)以及标准化的视频格式,从而能够构建用于大小估计的强大AI模型。通过公开提供此资源,我们旨在促进自动息肉测量方面的研究合作与创新,以最终改善临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/332f1f7701a3/41597_2025_5251_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/521b53e101f2/41597_2025_5251_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/48b3e13cbda1/41597_2025_5251_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/583fe0445daa/41597_2025_5251_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/4f004fa6910c/41597_2025_5251_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/1334a8893ebc/41597_2025_5251_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/79848faaadb7/41597_2025_5251_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/1073822bda5b/41597_2025_5251_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/332f1f7701a3/41597_2025_5251_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/521b53e101f2/41597_2025_5251_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/48b3e13cbda1/41597_2025_5251_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/583fe0445daa/41597_2025_5251_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/4f004fa6910c/41597_2025_5251_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/1334a8893ebc/41597_2025_5251_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/79848faaadb7/41597_2025_5251_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/1073822bda5b/41597_2025_5251_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af31/12126491/332f1f7701a3/41597_2025_5251_Fig8_HTML.jpg

相似文献

[1]
Polyp-Size: A Precise Endoscopic Dataset for AI-Driven Polyp Sizing.

Sci Data. 2025-5-31

[2]
Diagnostic Accuracy of Artificial Intelligence and Computer-Aided Diagnosis for the Detection and Characterization of Colorectal Polyps: Systematic Review and Meta-analysis.

J Med Internet Res. 2021-7-14

[3]
Comprehensive review of publicly available colonoscopic imaging databases for artificial intelligence research: availability, accessibility, and usability.

Gastrointest Endosc. 2023-2

[4]
Development of an AI-Assisted System for Automatic Recognition and Localization Marking of Colonic Polyps (With Video).

J Gastroenterol Hepatol. 2025-7

[5]
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

Therap Adv Gastroenterol. 2025-6-23

[6]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[7]
Transabdominal ultrasound and endoscopic ultrasound for diagnosis of gallbladder polyps.

Cochrane Database Syst Rev. 2018-8-15

[8]
Polyp detection with colonoscopy assisted by the GI Genius artificial intelligence endoscopy module compared with standard colonoscopy in routine colonoscopy practice (COLO-DETECT): a multicentre, open-label, parallel-arm, pragmatic randomised controlled trial.

Lancet Gastroenterol Hepatol. 2024-10

[9]
Improving reliability of movement assessment in Parkinson's disease using computer vision-based automated severity estimation.

J Parkinsons Dis. 2025-3

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

本文引用的文献

[1]
Prompt-based polyp segmentation during endoscopy.

Med Image Anal. 2025-5

[2]
Accuracy of Visual Estimation for Measuring Colonic Polyp Size: A Systematic Review and Meta-Analysis.

Am J Gastroenterol. 2025-2-28

[3]
ERCPMP: an endoscopic image and video dataset for colorectal polyps morphology and pathology.

BMC Res Notes. 2024-12-28

[4]
A complete benchmark for polyp detection, segmentation and classification in colonoscopy images.

Front Oncol. 2024-9-24

[5]
[Standardized diagnosis and treatment of colorectal polyps].

Zhonghua Wei Chang Wai Ke Za Zhi. 2024-6-25

[6]
REAL-Colon: A dataset for developing real-world AI applications in colonoscopy.

Sci Data. 2024-5-25

[7]
AGA Clinical Practice Update on Appropriate and Tailored Polypectomy: Expert Review.

Clin Gastroenterol Hepatol. 2024-3

[8]
A real-time deep learning-based system for colorectal polyp size estimation by white-light endoscopy: development and multicenter prospective validation.

Endoscopy. 2024-4

[9]
Endomapper dataset of complete calibrated endoscopy procedures.

Sci Data. 2023-10-3

[10]
Direct comparison of multiple computer-aided polyp detection systems.

Endoscopy. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索