Suppr超能文献

REAL-Colon:用于开发结肠镜检查中真实世界 AI 应用的数据集。

REAL-Colon: A dataset for developing real-world AI applications in colonoscopy.

机构信息

Cosmo Intelligent Medical Devices, Dublin, Ireland.

Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli (N.O.C.), Rome, Italy.

出版信息

Sci Data. 2024 May 25;11(1):539. doi: 10.1038/s41597-024-03359-0.

Abstract

Detection and diagnosis of colon polyps are key to preventing colorectal cancer. Recent evidence suggests that AI-based computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems can enhance endoscopists' performance and boost colonoscopy effectiveness. However, most available public datasets primarily consist of still images or video clips, often at a down-sampled resolution, and do not accurately represent real-world colonoscopy procedures. We introduce the REAL-Colon (Real-world multi-center Endoscopy Annotated video Library) dataset: a compilation of 2.7 M native video frames from sixty full-resolution, real-world colonoscopy recordings across multiple centers. The dataset contains 350k bounding-box annotations, each created under the supervision of expert gastroenterologists. Comprehensive patient clinical data, colonoscopy acquisition information, and polyp histopathological information are also included in each video. With its unprecedented size, quality, and heterogeneity, the REAL-Colon dataset is a unique resource for researchers and developers aiming to advance AI research in colonoscopy. Its openness and transparency facilitate rigorous and reproducible research, fostering the development and benchmarking of more accurate and reliable colonoscopy-related algorithms and models.

摘要

检测和诊断结肠息肉是预防结直肠癌的关键。最近的证据表明,基于人工智能的计算机辅助检测(CADe)和计算机辅助诊断(CADx)系统可以提高内镜医生的性能,提高结肠镜检查的效果。然而,大多数现有的公共数据集主要由静止图像或视频剪辑组成,通常是在降采样分辨率下,并且不能准确地代表实际的结肠镜检查程序。我们引入了 REAL-Colon(真实世界多中心内镜标注视频库)数据集:这是一个由 60 个来自多个中心的全分辨率真实结肠镜检查记录的 270 万张原始视频帧组成的数据集。该数据集包含 35 万个边界框注释,每个注释都是在专家胃肠病学家的监督下创建的。每个视频还包含全面的患者临床数据、结肠镜采集信息和息肉组织病理学信息。REAL-Colon 数据集具有前所未有的规模、质量和异质性,是研究人员和开发人员推进结肠镜检查中人工智能研究的独特资源。其开放性和透明度促进了严格和可重复的研究,有助于开发和基准测试更准确和可靠的与结肠镜检查相关的算法和模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f630/11127922/df084fdf70d9/41597_2024_3359_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验