Suppr超能文献

利用地理统计方法了解协变量对沙眼患病率预测的影响。

Understanding the impact of covariates for trachoma prevalence prediction using geostatistical methods.

作者信息

Sasanami Misaki, Almou Ibrahim, Diori Adam Nouhou, Bakhtiari Ana, Beidou Nassirou, Bisanzio Donal, Boyd Sarah, Burgert-Brucker Clara R, Amza Abdou, Gass Katherine, Kadri Boubacar, Kebede Fikreab, Masika Michael P, Olobio Nicholas P, Seife Fikre, Souley Abdoul Salam Youssoufou, Tefera Amsayaw, Kello Amir B, Solomon Anthony W, Harding-Esch Emma M, Giorgi Emanuele

机构信息

Lancaster Medical School, Lancaster University, Lancaster, UK.

Ministère de La Santé, Programme National de Santé Oculaire, Niamey, Niger.

出版信息

BMC Glob Public Health. 2025 Jun 1;3(1):48. doi: 10.1186/s44263-025-00161-x.

Abstract

BACKGROUND

Model-based geostatistics (MBG) is increasingly used for estimating the prevalence of neglected tropical diseases, including trachoma, in low- and middle-income countries. We sought to investigate the impact of spatially referenced covariates to improve spatial predictions for trachomatous inflammation-follicular (TF) prevalence generated by MBG. To this end, we assessed the ability of spatial covariates to explain the spatial variation of TF prevalence and to reduce uncertainty in the assessment of TF elimination for pre-defined evaluation units (EUs).

METHODS

We used data from Tropical Data-supported population-based trachoma prevalence surveys conducted in EUs in Ethiopia, Malawi, Niger, and Nigeria between 2016 and 2023. We then compared two models: a model that used only age, a variable required for the standardization of prevalence as used in the routine, standard prevalence estimation, and a model that included spatial covariates in addition to age. For each fitted model, we reported estimates of the parameters that quantify the strength of residual spatial correlation and 95% prediction intervals as the measure of uncertainty.

RESULTS

The strength of the association between covariates and TF prevalence varied within and across countries. For some EUs, spatially referenced covariates explained most of the spatial variation and thus allowed us to generate predictive inferences for TF prevalence with a substantially reduced uncertainty, compared with models without the spatial covariates. For example, the prediction interval for TF prevalence in the areas with the lowest TF prevalence in Nigeria narrowed substantially, from a width of 2.9 to 0.7. This reduction occurred as the inclusion of spatial covariates significantly decreased the variance of the spatial Gaussian process in the geostatistical model. In other cases, spatial covariates only led to minor gains, with slightly smaller prediction intervals for the EU-level TF prevalence or even a wider prediction interval.

CONCLUSIONS

Although spatially referenced covariates could help reduce prediction uncertainty in some cases, the gain could be very minor, or uncertainty could even increase. When considering the routine, standardized use of MBG methods to support national trachoma programs worldwide, we recommend that spatial covariate use be avoided.

摘要

背景

基于模型的地理统计学(MBG)在低收入和中等收入国家越来越多地用于估计包括沙眼在内的被忽视热带病的流行率。我们试图研究空间参考协变量对改善MBG生成的沙眼性炎症-滤泡型(TF)流行率空间预测的影响。为此,我们评估了空间协变量解释TF流行率空间变异以及减少预定义评估单位(EU)TF消除评估不确定性的能力。

方法

我们使用了2016年至2023年期间在埃塞俄比亚、马拉维、尼日尔和尼日利亚的评估单位开展的热带数据支持的基于人群的沙眼流行率调查数据。然后我们比较了两个模型:一个仅使用年龄的模型,年龄是常规标准流行率估计中流行率标准化所需的变量;另一个除年龄外还包括空间协变量的模型。对于每个拟合模型,我们报告了量化残余空间相关性强度的参数估计值以及作为不确定性度量的95%预测区间。

结果

协变量与TF流行率之间的关联强度在不同国家和国家内部各不相同。对于一些评估单位,空间参考协变量解释了大部分空间变异,因此与没有空间协变量的模型相比,我们能够以大幅降低的不确定性生成TF流行率的预测推断。例如,尼日利亚TF流行率最低地区的TF流行率预测区间大幅缩小,从2.9缩小到0.7。这种缩小是因为纳入空间协变量显著降低了地理统计模型中空间高斯过程的方差。在其他情况下,空间协变量仅带来微小收益,欧盟层面TF流行率的预测区间略小,甚至预测区间更宽。

结论

虽然空间参考协变量在某些情况下有助于降低预测不确定性,但收益可能非常小,甚至不确定性可能增加。在考虑常规、标准化使用MBG方法以支持全球各国沙眼项目时,我们建议避免使用空间协变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a444/12126867/0adf2f9d6a9d/44263_2025_161_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验