Uribe Sergio E, Hamdan Manal H, Valente Nicola Alberto, Yamaguchi Satoshi, Umer Fahad, Tichy Antonin, Pauwels Ruben, Schwendicke Falk
Department of Conservative Dentistry and Oral Health, Riga Stradins University, Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia & Institute of Stomatology, Riga Stradins University, Riga, Latvia; Clinic for Conservative Dentistry and Periodontology, LMU Klinikum, Munich, Germany.
Department of Surgical and Diagnostic Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA.
J Dent. 2025 Sep;160:105867. doi: 10.1016/j.jdent.2025.105867. Epub 2025 May 30.
Artificial intelligence (AI) is increasingly used in dental research for diagnosis, treatment planning, and disease prediction. However, many dental AI studies lack methodological rigor, transparency, or reproducibility, and no dedicated peer-review guidance exists for this field.
Editors and reviewers from the ITU/WHO/WIPO AI for Health - Dentistry group participated in a structured survey and group discussions to identify key elements for reviewing AI dental research. A draft of the recommendations was circulated for feedback and consensus.
The consensus from editors and reviewers identified four key indicators of high-quality AI dental research: (1) relevance to a real clinical or methodological problem, (2) robust and transparent methodology, (3) reproducibility through data/code availability or functional demos, and (4) adherence to ethical and responsible reporting practices. Common reasons for rejection included lack of novelty, poor methodology, limited external testing, and overstated claims. Four essential checks were proposed to support peer review: the study should address a meaningful clinical question, follow appropriate reporting guidelines (e.g., DENTAL-AI, STARD-AI), clearly describe reproducible methods, and use precise, justified, and clinically relevant wording.
Editors and reviewers play a critical role in improving the quality of AI research in dentistry. This guidance aims to support more robust peer review and contribute to the development of reliable, clinically relevant, and ethically sound AI applications in dentistry.
人工智能(AI)在牙科研究中越来越多地用于诊断、治疗计划和疾病预测。然而,许多牙科人工智能研究缺乏方法的严谨性、透明度或可重复性,并且该领域没有专门的同行评审指南。
国际电联/世卫组织/世界知识产权组织健康领域人工智能——牙科小组的编辑和评审人员参与了一项结构化调查和小组讨论,以确定评审人工智能牙科研究的关键要素。建议草案进行了传阅以征求反馈意见并达成共识。
编辑和评审人员的共识确定了高质量人工智能牙科研究的四个关键指标:(1)与实际临床或方法学问题的相关性,(2)稳健且透明的方法,(3)通过数据/代码可用性或功能演示实现可重复性,以及(4)遵守道德和负责任的报告规范。被拒稿的常见原因包括缺乏新颖性、方法不佳、外部测试有限以及夸大的主张。提出了四项基本检查以支持同行评审:该研究应解决有意义的临床问题,遵循适当的报告指南(如DENTAL - AI、STARD - AI),清晰描述可重复的方法,并使用精确、合理且与临床相关的措辞。
编辑和评审人员在提高牙科人工智能研究质量方面发挥着关键作用。本指南旨在支持更严格的同行评审,并为牙科领域可靠、临床相关且符合伦理的人工智能应用的发展做出贡献。