Suppr超能文献

基于代谢物相关配体-受体相互作用,通过 MRCLinkdb 预测细胞间通讯。

Predicting intercellular communication based on metabolite-related ligand-receptor interactions with MRCLinkdb.

机构信息

Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China.

Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

出版信息

BMC Biol. 2024 Jul 8;22(1):152. doi: 10.1186/s12915-024-01950-w.

Abstract

BACKGROUND

Metabolite-associated cell communications play critical roles in maintaining human biological function. However, most existing tools and resources focus only on ligand-receptor interaction pairs where both partners are proteinaceous, neglecting other non-protein molecules. To address this gap, we introduce the MRCLinkdb database and algorithm, which aggregates and organizes data related to non-protein L-R interactions in cell-cell communication, providing a valuable resource for predicting intercellular communication based on metabolite-related ligand-receptor interactions.

RESULTS

Here, we manually curated the metabolite-ligand-receptor (ML-R) interactions from the literature and known databases, ultimately collecting over 790 human and 670 mouse ML-R interactions. Additionally, we compiled information on over 1900 enzymes and 260 transporter entries associated with these metabolites. We developed Metabolite-Receptor based Cell Link Database (MRCLinkdb) to store these ML-R interactions data. Meanwhile, the platform also offers extensive information for presenting ML-R interactions, including fundamental metabolite information and the overall expression landscape of metabolite-associated gene sets (such as receptor, enzymes, and transporter proteins) based on single-cell transcriptomics sequencing (covering 35 human and 26 mouse tissues, 52 human and 44 mouse cell types) and bulk RNA-seq/microarray data (encompassing 62 human and 39 mouse tissues). Furthermore, MRCLinkdb introduces a web server dedicated to the analysis of intercellular communication based on ML-R interactions. MRCLinkdb is freely available at https://www.cellknowledge.com.cn/mrclinkdb/ .

CONCLUSIONS

In addition to supplementing ligand-receptor databases, MRCLinkdb may provide new perspectives for decoding the intercellular communication and advancing related prediction tools based on ML-R interactions.

摘要

背景

代谢物相关的细胞通讯在维持人类生物学功能方面起着至关重要的作用。然而,大多数现有的工具和资源仅关注配体-受体相互作用对,其中两者都是蛋白质,忽略了其他非蛋白质分子。为了解决这一差距,我们引入了 MRCLinkdb 数据库和算法,它聚合和组织了与细胞间通讯中非蛋白 L-R 相互作用相关的数据,为基于代谢物相关配体-受体相互作用预测细胞间通讯提供了有价值的资源。

结果

在这里,我们从文献和已知数据库中手动整理了代谢物-配体-受体 (ML-R) 相互作用,最终收集了超过 790 个人类和 670 个小鼠 ML-R 相互作用。此外,我们还汇编了与这些代谢物相关的 1900 多种酶和 260 多种转运体的信息。我们开发了基于代谢物受体的细胞链接数据库 (MRCLinkdb) 来存储这些 ML-R 相互作用数据。同时,该平台还提供了广泛的信息来呈现 ML-R 相互作用,包括基本代谢物信息和基于单细胞转录组测序的代谢物相关基因集(如受体、酶和转运体蛋白)的整体表达图谱(涵盖 35 个人类和 26 个小鼠组织、52 个人类和 44 个小鼠细胞类型)和批量 RNA-seq/microarray 数据(包括 62 个人类和 39 个小鼠组织)。此外,MRCLinkdb 引入了一个专门用于基于 ML-R 相互作用分析细胞间通讯的网络服务器。MRCLinkdb 可在 https://www.cellknowledge.com.cn/mrclinkdb/ 免费获取。

结论

除了补充配体-受体数据库外,MRCLinkdb 还可以为解码细胞间通讯提供新的视角,并基于 ML-R 相互作用推进相关预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a587/11232326/2c1c8a57bc89/12915_2024_1950_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验