Suppr超能文献

代谢特征在骨质疏松症中的作用综合分析:多组学分析

Comprehensive Analysis of the Role of Metabolic Features in Osteoporosis: A Multi-Omics Analysis.

作者信息

Chang Shengjia, Tao Weiwei, Shi Pengwen, Wu Huashan, Liu Hongjun, Xu Junjie, Chen Jianghua, Zhu Jianfei

机构信息

Department of Spinal Surgery, Huai'an 82 hospital, Huai'an, Jiangsu, 223001, People's Republic of China.

Dazhou Vocational College of Chinese Medicine, Dazhou, Sichuan, 635001, People's Republic of China.

出版信息

Int J Gen Med. 2025 May 26;18:2727-2739. doi: 10.2147/IJGM.S515717. eCollection 2025.

Abstract

PURPOSE

This study aims to comprehensively explore the metabolic features related to the pathogenesis of osteoporosis (OP) through multi-omics analysis strategy.

PATIENTS AND METHODS

Gene expression profiles of OP patients (GSE56815) were downloaded from GEO, and metabolism-related genes (MRGs) were extracted. Plasma samples from 45 OP patients and 18 healthy controls (CON) were collected for metabolomics. We predicted miRNA and transcription factors (TFs) regulating the expression of MRGs on public databases ENCORI and JASPAR, and analyzed the expression levels of target miRNAs using miRNA sequencing of femoral tissues from 7 samples (OP:CON=4:3). Three machine learning algorithms were used to evaluate the diagnostic potential of metabolic signatures for OP.

RESULTS

A total of 402 significantly differentially expressed MRGs (DEMRGs) were identified in the transcriptome, and these DEMRGs were enriched in 11 metabolic pathways (<0.05). Metabolomics identified 119 differential plasma metabolites, enriched in 5 metabolic pathways (<0.05). Purine metabolism, Tryptophan metabolism, and Tyrosine metabolism were identified as key metabolic pathways and were significantly enriched in DEMRGs. Femoral miRNA sequencing found 124 differentially expressed miRNAs, with 23 regulating key metabolic pathway gene expression (<0.05). Additionally, 13 differentially expressed TFs were predicted to regulate the expression levels of these 23 miRNAs. Finally, three MRGs and one plasma metabolite were selected based on the machine learning algorithm, with AUC of 0.782, 0.714, 0.772 and 0.836, respectively. The diagnostic performance of these metabolic features was better than that of traditional bone metabolism biochemical markers.

CONCLUSION

This multi-omics study comprehensively explores the metabolic landscape in OP progression, highlighting the central role of metabolic features in the disease. The constructed multi-omics regulatory network aids in understanding the molecular mechanisms of metabolic features in OP progression.

摘要

目的

本研究旨在通过多组学分析策略全面探索与骨质疏松症(OP)发病机制相关的代谢特征。

患者与方法

从基因表达综合数据库(GEO)下载OP患者的基因表达谱(GSE56815),并提取代谢相关基因(MRGs)。收集45例OP患者和18例健康对照(CON)的血浆样本进行代谢组学研究。我们在公共数据库ENCORI和JASPAR上预测调控MRGs表达的miRNA和转录因子(TFs),并使用来自7个样本(OP:CON = 4:3)的股骨组织的miRNA测序分析靶miRNA的表达水平。使用三种机器学习算法评估代谢特征对OP的诊断潜力。

结果

在转录组中总共鉴定出402个显著差异表达的MRGs(DEMRGs),这些DEMRGs富集于11条代谢途径(<0.05)。代谢组学鉴定出119种差异血浆代谢物,富集于5条代谢途径(<0.05)。嘌呤代谢、色氨酸代谢和酪氨酸代谢被确定为关键代谢途径,并且在DEMRGs中显著富集。股骨miRNA测序发现124个差异表达的miRNA,其中23个调控关键代谢途径基因的表达(<0.05)。此外,预测有13个差异表达的TFs调控这23个miRNA的表达水平。最后,基于机器学习算法选择了三个MRGs和一种血浆代谢物,其曲线下面积(AUC)分别为0.782、0.714、0.772和0.836。这些代谢特征的诊断性能优于传统的骨代谢生化标志物。

结论

这项多组学研究全面探索了OP进展中的代谢格局,突出了代谢特征在该疾病中的核心作用。构建的多组学调控网络有助于理解OP进展中代谢特征的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ff/12124299/65b7017b4330/IJGM-18-2727-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验