Department of Bioengineering, University of California, Berkeley, California 94720
Genetics. 2020 Dec;216(4):1187-1204. doi: 10.1534/genetics.120.303630. Epub 2020 Oct 5.
We introduce a systematic method of approximating finite-time transition probabilities for continuous-time insertion-deletion models on sequences. The method uses automata theory to describe the action of an infinitesimal evolutionary generator on a probability distribution over alignments, where both the generator and the alignment distribution can be represented by pair hidden Markov models (HMMs). In general, combining HMMs in this way induces a multiplication of their state spaces; to control this, we introduce a coarse-graining operation to keep the state space at a constant size. This leads naturally to ordinary differential equations for the evolution of the transition probabilities of the approximating pair HMM. The TKF91 model emerges as an exact solution to these equations for the special case of single-residue indels. For the more general case of multiple-residue indels, the equations can be solved by numerical integration. Using simulated data, we show that the resulting distribution over alignments, when compared to previous approximations, is a better fit over a broader range of parameters. We also propose a related approach to develop differential equations for sufficient statistics to estimate the underlying instantaneous indel rates by expectation maximization. Our code and data are available at https://github.com/ihh/trajectory-likelihood.
我们介绍了一种用于近似连续时间插入缺失模型在序列上的有限时间转移概率的系统方法。该方法使用自动机理论来描述无穷小进化生成器对对齐概率分布的作用,其中生成器和对齐分布都可以由对隐马尔可夫模型 (HMM) 表示。通常,以这种方式组合 HMM 会导致它们的状态空间相乘;为了控制这一点,我们引入了一个粗粒度操作,将状态空间保持在固定大小。这自然导致了近似对 HMM 的转移概率的演化的常微分方程。对于单残基插入缺失的特殊情况,TKF91 模型成为这些方程的精确解。对于更一般的多残基插入缺失的情况,这些方程可以通过数值积分来求解。使用模拟数据,我们表明,与以前的近似值相比,所得到的对齐分布在更广泛的参数范围内具有更好的拟合度。我们还提出了一种相关的方法,通过期望最大化来开发用于充分统计量的微分方程,以估计潜在的瞬时插入缺失率。我们的代码和数据可在 https://github.com/ihh/trajectory-likelihood 上获得。