Suppr超能文献

用于疾病进展的连续时间隐马尔可夫模型的高效学习

Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression.

作者信息

Liu Yu-Ying, Li Shuang, Li Fuxin, Song Le, Rehg James M

机构信息

College of Computing Georgia Institute of Technology Atlanta, GA.

出版信息

Adv Neural Inf Process Syst. 2015;28:3599-3607.

Abstract

The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to modeling disease progression due to its ability to describe noisy observations arriving irregularly in time. However, the lack of an efficient parameter learning algorithm for CT-HMM restricts its use to very small models or requires unrealistic constraints on the state transitions. In this paper, we present the first complete characterization of efficient EM-based learning methods for CT-HMM models. We demonstrate that the learning problem consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics. We solve the first challenge by reformulating the estimation problem in terms of an equivalent discrete time-inhomogeneous hidden Markov model. The second challenge is addressed by adapting three approaches from the continuous time Markov chain literature to the CT-HMM domain. We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer's disease dataset.

摘要

连续时间隐马尔可夫模型(CT - HMM)是一种用于对疾病进展进行建模的有吸引力的方法,因为它能够描述随时间不规则到达的噪声观测值。然而,缺乏一种针对CT - HMM的高效参数学习算法限制了其应用于非常小的模型,或者需要对状态转移施加不切实际的约束。在本文中,我们首次全面刻画了基于期望最大化(EM)的CT - HMM模型高效学习方法。我们证明学习问题包含两个挑战:后验状态概率的估计和终态条件统计量的计算。我们通过将估计问题重新表述为等效的离散时间非齐次隐马尔可夫模型来解决第一个挑战。通过将连续时间马尔可夫链文献中的三种方法应用于CT - HMM领域来解决第二个挑战。我们展示了使用具有100多个状态的CT - HMM,通过青光眼数据集和阿尔茨海默病数据集来可视化和预测疾病进展。

相似文献

5
Phase transition for parameter learning of hidden Markov models.隐马尔可夫模型参数学习的相变
Phys Rev E. 2021 Oct;104(4-1):044105. doi: 10.1103/PhysRevE.104.044105.
7
Clustering Hidden Markov Models With Variational Bayesian Hierarchical EM.变分贝叶斯层次 EM 聚类隐马尔可夫模型。
IEEE Trans Neural Netw Learn Syst. 2023 Mar;34(3):1537-1551. doi: 10.1109/TNNLS.2021.3105570. Epub 2023 Feb 28.

引用本文的文献

1
Beyond time-homogeneity for continuous-time multistate Markov models.超越连续时间多状态马尔可夫模型的时间齐次性。
J Comput Graph Stat. 2025;34(2):668-682. doi: 10.1080/10618600.2024.2388609. Epub 2024 Sep 30.

本文引用的文献

10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验