Suppr超能文献

一种基于现场可编程门阵列的硅纳米线场效应晶体管生物传感系统用于实时病毒检测:硬件放大和一维卷积神经网络用于自适应降噪

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

作者信息

Hadded Ahmed, Ben Ayed Mossaad, Alshaya Shaya A

机构信息

Computer and Embedded System Laboratory, National Engineering School of Sfax, Sfax University, Sfax 3038, Tunisia.

Electronic Industrial, ENISo, Sousse University, Sousse 4054, Tunisia.

出版信息

Sensors (Basel). 2025 Jan 3;25(1):236. doi: 10.3390/s25010236.

Abstract

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency. The integration of a 1D CNN model on FPGA hardware for adaptive, non-linear noise filtering sets this design apart from conventional filtering approaches by achieving high accuracy and low power consumption in a portable format. This integration of SiNW-FET with FPGA-based CNN noise reduction offers a unique approach, as prior noise reduction techniques for biosensors typically rely on linear filtering or digital smoothing, which lack adaptive capabilities for complex, non-linear noise patterns. By introducing the 1D CNN on FPGA, this architecture enables real-time, high-fidelity noise reduction, preserving critical signal characteristics without compromising processing speed. Notably, the findings presented in this work are based exclusively on comprehensive simulations using COMSOL and MATLAB, as no physical prototypes or biomarker detection experiments were conducted. The SiNW-FET biosensor, functionalized with antibodies specific to viral antigens, detects impedance shifts caused by antibody-antigen interactions, providing a highly sensitive platform for viral detection. A high-gain folded-cascade amplifier enhances the Signal-to-Noise Ratio (SNR) to approximately 70 dB, verified through COMSOL and MATLAB simulations. Additionally, a 1D CNN model is employed for adaptive noise reduction, filtering out non-linear noise patterns and achieving an approximate 75% noise reduction across a broad frequency range. The CNN model, implemented on an Altera DE2 FPGA, enables high-throughput, low-latency signal processing, making the system viable for real-time applications. Performance evaluations confirmed the proposed system's capability to enhance the SNR significantly while maintaining a compact and energy-efficient design suitable for portable diagnostics. This integrated architecture thus provides a powerful solution for high-precision, real-time viral detection, and continuous health monitoring, advancing the role of biosensors in accessible point-of-care diagnostics.

摘要

基于阻抗的生物传感已成为高灵敏度生物分子检测的关键技术,但传统方法通常依赖于笨重、昂贵的阻抗分析仪,限制了它们在即时护理应用中的便携性和可用性。为了解决这些限制,本文提出了一种先进的生物传感系统,该系统将硅纳米线场效应晶体管(SiNW-FET)生物传感器与高增益放大电路以及在FPGA硬件上实现的一维卷积神经网络(CNN)集成在一起。这一尝试将SiNW-FET生物传感技术与FPGA实现的深度学习降噪相结合,创建了一个能够以最小计算延迟进行实时病毒检测的紧凑型系统。在FPGA硬件上集成一维CNN模型用于自适应、非线性噪声滤波,通过以便携式形式实现高精度和低功耗,使该设计有别于传统滤波方法。将SiNW-FET与基于FPGA的CNN降噪相结合提供了一种独特的方法,因为生物传感器先前的降噪技术通常依赖于线性滤波或数字平滑,缺乏对复杂非线性噪声模式的自适应能力。通过在FPGA上引入一维CNN,这种架构实现了实时、高保真降噪,在不影响处理速度的情况下保留关键信号特征。值得注意的是,这项工作中呈现的结果完全基于使用COMSOL和MATLAB进行的全面模拟,因为没有进行物理原型或生物标志物检测实验。用针对病毒抗原的特异性抗体功能化的SiNW-FET生物传感器检测由抗体-抗原相互作用引起的阻抗变化,为病毒检测提供了一个高灵敏度平台。一个高增益折叠级联放大器将信噪比(SNR)提高到约70 dB,这通过COMSOL和MATLAB模拟得到验证。此外,采用一维CNN模型进行自适应降噪,滤除非线性噪声模式,并在很宽的频率范围内实现约75%的降噪。在Altera DE2 FPGA上实现的CNN模型实现了高通量、低延迟信号处理,使该系统适用于实时应用。性能评估证实了所提出系统在显著提高SNR的同时,保持紧凑且节能的设计以适用于便携式诊断的能力。这种集成架构因此为高精度、实时病毒检测和连续健康监测提供了一个强大的解决方案,推动了生物传感器在可及的即时护理诊断中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f500/11723262/8f392d4a1f73/sensors-25-00236-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验