Jayananthan Vinodhini, Taylor Tyler Heisler, Greentree David Henry, Collison Bryce, Kerur Nagaraj
Department of Ophthalmology and Visual Sciences, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
Transl Vis Sci Technol. 2025 Jun 2;14(6):4. doi: 10.1167/tvst.14.6.4.
Quantifying vascular leakage in fundus fluorescein angiography (FFA) is a critical endpoint in preclinical models of diseases such as neovascular age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy. Traditional manual methods are labor intensive and prone to variability. We developed an artificial intelligence (AI)-assisted method to improve efficiency and accuracy in quantifying vascular lesions in FFA images.
Nikon NIS-Elements software with AI functionality was used to create an automated FFA analysis method. FFA images were acquired using the Phoenix MICRON IV imaging system in two mouse models of ocular angiogenesis: (1) very low-density lipoprotein receptor (Vldlr) knockout mice exhibiting spontaneous pathological chorioretinal neovascularization, and (2) a laser-induced choroidal neovascularization model. The AI model was trained on manually segmented FFA images to delineate lesions and quantify lesion area and fluorescence intensity.
The AI model demonstrated high accuracy in quantifying vascular lesions in FFA images, achieving 99.7% agreement with manual counts. It attained a precision, recall, and F1 score of 0.94, with an intraclass correlation coefficient (ICC) of 0.991. The model showed strong spatial agreement with manual segmentations and consistent lesion area measurements. On validation images, it maintained expert-level performance (ICC = 0.998) with high sensitivity and precision. Additionally, it effectively captured temporal changes in vascular leakage by measuring lesion area and fluorescence intensity, demonstrating robustness in real-world experiments.
Our AI model quantifies vascular lesions in FFA images with high accuracy, outperforming manual analysis.
AI-based quantification provides a scalable, consistent alternative to manual methods, enhancing research efficiency.
在诸如新生血管性年龄相关性黄斑变性、早产儿视网膜病变和糖尿病性视网膜病变等疾病的临床前模型中,量化眼底荧光血管造影(FFA)中的血管渗漏是一个关键终点。传统的手动方法劳动强度大且容易出现变异性。我们开发了一种人工智能(AI)辅助方法,以提高FFA图像中血管病变量化的效率和准确性。
使用具有AI功能的尼康NIS-Elements软件创建一种自动FFA分析方法。在两种眼部血管生成小鼠模型中,使用Phoenix MICRON IV成像系统采集FFA图像:(1)极低密度脂蛋白受体(Vldlr)基因敲除小鼠,表现出自发性病理性脉络膜视网膜新生血管形成;(2)激光诱导的脉络膜新生血管形成模型。AI模型在手动分割的FFA图像上进行训练,以描绘病变并量化病变面积和荧光强度。
AI模型在量化FFA图像中的血管病变方面显示出高准确性,与手动计数的一致性达到99.7%。其精确率、召回率和F1分数为0.94,组内相关系数(ICC)为0.991。该模型与手动分割显示出很强的空间一致性,并且病变面积测量一致。在验证图像上,它保持了专家级性能(ICC = 0.998),具有高灵敏度和精确率。此外,它通过测量病变面积和荧光强度有效地捕捉了血管渗漏的时间变化,在实际实验中表现出稳健性。
我们的AI模型能够高精度地量化FFA图像中的血管病变,优于手动分析。
基于AI的量化为手动方法提供了一种可扩展、一致的替代方法,提高了研究效率。