Gu Junlin, Liu Weiwei, Yang Xiong
Department of Computer, Jiangsu Vocational College of Electronics and Information, Huai'an, China.
Department of Computer Engineering, Fuzhou University Zhicheng College, Fuzhou, China.
PLoS One. 2025 Jun 2;20(6):e0324290. doi: 10.1371/journal.pone.0324290. eCollection 2025.
The entity alignment task aims to match semantically corresponding entities in different knowledge graphs, which is important for knowledge fusion. Traditional graph-based methods often lose information due to insufficient use of attributes and imperfect relationship modeling, which makes it difficult to capture the deep semantic relationship between entities fully. To improve the effect of entity alignment, we propose a new model named ARNM-DAE2A, which strengthens the information aggregation capability of GCN by introducing a dual-attention mechanism to ensure a more balanced and comprehensive structural representation. The model contains the entity structure embedding module, the attribute structure embedding module, the joint alignment module and the relationship-aware neighborhood matching module. The entity structure embedding module optimizes the structure learning capability of GCN by introducing the pairwise attention mechanism. The attribute structural embedding module utilizes GCN to acquire entity attribute information. The joint alignment module weights and fuses the relationship structure information and attribute information as a comprehensive representation of entities. The relationship-aware neighborhood matching module then corrects the noise in the GCN aggregated information by comparing the neighborhood relationships of entity pairs. Experiments conducted on DBP15K and SRPRS datasets illustrate that the proposed ARNM-DAE2A outperforms baselines.
实体对齐任务旨在匹配不同知识图谱中语义对应的实体,这对于知识融合至关重要。传统的基于图的方法由于对属性的利用不足和关系建模不完善,常常会丢失信息,这使得难以充分捕捉实体之间的深层语义关系。为了提高实体对齐的效果,我们提出了一种名为ARNM-DAE2A的新模型,该模型通过引入双注意力机制来增强GCN的信息聚合能力,以确保更平衡和全面的结构表示。该模型包含实体结构嵌入模块、属性结构嵌入模块、联合对齐模块和关系感知邻域匹配模块。实体结构嵌入模块通过引入成对注意力机制来优化GCN的结构学习能力。属性结构嵌入模块利用GCN获取实体属性信息。联合对齐模块对关系结构信息和属性信息进行加权融合,作为实体的综合表示。然后,关系感知邻域匹配模块通过比较实体对的邻域关系来校正GCN聚合信息中的噪声。在DBP15K和SRPRS数据集上进行的实验表明,所提出的ARNM-DAE2A优于基线模型。