Suppr超能文献

有和没有自旋轨道耦合的磁性材料的晶体张量性质。自旋点群作为近似对称性的应用。

Crystal tensor properties of magnetic materials with and without spin-orbit coupling. Application of spin point groups as approximate symmetries.

作者信息

Etxebarria Jesus, Perez-Mato J Manuel, Tasci Emre S, Elcoro Luis

机构信息

Department of Physics, Faculty of Science and Technology, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain.

Faculty of Science and Technology, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain.

出版信息

Acta Crystallogr A Found Adv. 2025 Jul 1;81(Pt 4):317-338. doi: 10.1107/S2053273325004127. Epub 2025 Jun 10.

Abstract

Spin space groups, formed by operations where the rotation of the spins is independent of the accompanying operation acting on the crystal structure, are appropriate groups to describe the symmetry of magnetic structures with null spin-orbit coupling. Their corresponding spin point groups are the symmetry groups to be considered for deriving the symmetry constraints on the form of the crystal tensor properties of such idealized structures. These groups can also be taken as approximate symmetries (with some restrictions) of real magnetic structures, where spin-orbit coupling and magnetic anisotropy are however present. Here we formalize the invariance transformation properties that must satisfy the most important crystal tensors under a spin point group. This is done using modified Jahn symbols, which generalize those applicable to ordinary magnetic point groups [Gallego et al. (2019). Acta Cryst. A75, 438-447]. The analysis includes not only equilibrium tensors, but also transport, optical and non-linear optical susceptibility tensors. The constraints imposed by spin collinearity and coplanarity within the spin group formalism on a series of representative tensors are discussed and compiled. As illustrative examples, the defined tensor invariance equations have been applied to some known magnetic structures, showing the differences in the symmetry-adapted form of some relevant tensors, when considered under the constraints of its spin point group or its magnetic point group. This comparison, with the spin point group implying additional constraints in the tensor form, can allow one to distinguish those magnetic-related properties that can be solely attributed to spin-orbit coupling from those that are expected even when spin-orbit coupling is negligible.

摘要

自旋空间群由自旋旋转独立于作用于晶体结构的伴随操作的操作形成,是描述具有零自旋轨道耦合的磁结构对称性的合适群。它们相应的自旋点群是推导此类理想化结构晶体张量性质形式的对称约束时要考虑的对称群。这些群也可以被视为实际磁结构的近似对称性(有一些限制),不过实际磁结构中存在自旋轨道耦合和磁各向异性。在这里,我们形式化了最重要的晶体张量在自旋点群下必须满足的不变性变换性质。这是通过修改后的扬符号来完成的,这些符号推广了适用于普通磁点群的符号[加列戈等人(2019年)。《晶体学报》。A75,438 - 447]。分析不仅包括平衡张量,还包括输运、光学和非线性光学极化率张量。讨论并汇编了自旋群形式体系中自旋共线性和共面性对一系列代表性张量施加的约束。作为示例,已将定义的张量不变性方程应用于一些已知的磁结构,展示了在其自旋点群或磁点群的约束下考虑时,一些相关张量在对称适配形式上的差异。这种比较中,自旋点群意味着张量形式有额外约束,这可以让人区分那些可 solely 归因于自旋轨道耦合的磁相关性质与即使自旋轨道耦合可忽略时也预期存在的性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5c/12207915/d35193a6bb92/a-81-00317-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验