Suppr超能文献

基于可解释机器学习模型预测A型主动脉夹层患者术后胃肠道出血风险

Predicting the risk of postoperative gastrointestinal bleeding in patients with Type A aortic dissection based on an interpretable machine learning model.

作者信息

Li Lin, Yang Xing, Guo Wei, Wu Wenxian, Guo Meixia, Li Huanhuan, Wang Xueyan, Che Siyu

机构信息

Department of Nursing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China.

First Clinical Medical School, Shanxi Medical University, Taiyuan, China.

出版信息

Front Med (Lausanne). 2025 May 19;12:1554579. doi: 10.3389/fmed.2025.1554579. eCollection 2025.

Abstract

BACKGROUND

Gastrointestinal bleeding (GIB) is a common complication following Type A aortic dissection (TAAD) surgery, significantly impacting prognosis and increasing mortality risk. This study developed and validated a predictive model based on machine learning (ML) algorithms to enable early and precise assessment of postoperative GIB risk in TAAD patients.

METHODS

Medical records of patients who underwent TAAD surgery at Shanxi Bethune Hospital from January 2019 to September 2024 were retrospectively collected. Predictors were screened using LASSO regression, and four ML algorithms-Random Forest (RF), K-nearest neighbor (KNN), Support Vector Machines (SVM), and Decision Tree (DT)-were employed to construct models for predicting postoperative GIB risk. The dataset was divided into training and validation sets in a 7:3 ratio. Predictive performance was evaluated and compared using Receiver Operating Characteristic (ROC) curves and DeLong tests. Calibration curves and decision curve analysis (DCA) were used to assess model calibration and clinical utility. The SHapley Additive exPlanation (SHAP) algorithm was applied for interpretability analysis. This study adhered to the "Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis + Artificial Intelligence (TRIPOD+AI) guidelines."

RESULTS

A total of 525 TAAD patients were included, with 63 (12%) developing GIB. Nine predictors were selected via LASSO regression for model construction. The RF model outperformed the SVM, KNN, and DT models in predicting postoperative GIB, with areas under the ROC curve (AUC) of 0.933, 0.892, 0.902, and 0.768, respectively, showing statistically significant differences (DeLong test, < 0.05). Calibration curves and DCA further confirmed the RF model's excellent calibration and clinical utility. SHAP analysis identified the three most influential clinical features on the RF model's output: duration of mechanical ventilation (MV), Time to aortic occlusion, and red blood cell (RBC) transfusion.

CONCLUSION

The machine learning-based predictive model effectively assesses postoperative GIB risk in TAAD patients, aiding healthcare providers in early identification of risk factors and implementation of targeted preventive strategies.

摘要

背景

胃肠道出血(GIB)是A型主动脉夹层(TAAD)手术后的常见并发症,对预后有显著影响,并增加死亡风险。本研究基于机器学习(ML)算法开发并验证了一种预测模型,以实现对TAAD患者术后GIB风险的早期精确评估。

方法

回顾性收集2019年1月至2024年9月在山西白求恩医院接受TAAD手术患者的病历。使用LASSO回归筛选预测因素,并采用四种ML算法——随机森林(RF)、K近邻(KNN)、支持向量机(SVM)和决策树(DT)——构建预测术后GIB风险的模型。数据集按7:3的比例分为训练集和验证集。使用受试者操作特征(ROC)曲线和德龙检验评估并比较预测性能。校准曲线和决策曲线分析(DCA)用于评估模型校准和临床实用性。采用SHapley加性解释(SHAP)算法进行可解释性分析。本研究遵循“个体预后或诊断多变量预测模型的透明报告+人工智能(TRIPOD+AI)指南”。

结果

共纳入525例TAAD患者,其中63例(12%)发生GIB。通过LASSO回归选择了9个预测因素用于模型构建。RF模型在预测术后GIB方面优于SVM、KNN和DT模型,ROC曲线下面积(AUC)分别为0.933、0.892、0.902和0.768,差异具有统计学意义(德龙检验,<0.05)。校准曲线和DCA进一步证实了RF模型具有良好的校准和临床实用性。SHAP分析确定了对RF模型输出影响最大的三个临床特征:机械通气(MV)持续时间、主动脉阻断时间和红细胞(RBC)输注。

结论

基于机器学习的预测模型可有效评估TAAD患者术后GIB风险,有助于医护人员早期识别危险因素并实施针对性预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d94/12127380/97b166cff1a1/fmed-12-1554579-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验