Suppr超能文献

构建和验证冠状动脉旁路移植术后患者胃肠道出血风险预测模型。

Construction and validation of risk prediction model for gastrointestinal bleeding in patients after coronary artery bypass grafting.

机构信息

Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China.

出版信息

Sci Rep. 2023 Dec 11;13(1):21909. doi: 10.1038/s41598-023-49405-6.

Abstract

This study aimed to develop a risk prediction model for gastrointestinal bleeding in patients after coronary artery bypass grafting (CABG) and assessed its accuracy. A retrospective analysis was conducted on 232 patients who underwent CABG under general anesthesia in our hospital between January 2022 and December 2022. The patients were divided into gastrointestinal bleeding (GIB) group (n = 52) and group without gastrointestinal bleeding (non-GIB) (n = 180). The independent risk factors for gastrointestinal bleeding in post-CABG patients were analyzed using χ test, t test and logistic multivariate regression analysis. A prediction model was established based on the identified risk factors. To verify the accuracy of the prediction model, a verification group of 161 patients who met the criteria was selected between January to June 2023, and the Bootstrap method was used for internal validation. The discrimination of the prediction model was evaluated using the area under the curve (AUC), where a higher AUC indicates a stronger discrimination effect of the model. The study developed a risk prediction model for gastrointestinal bleeding after CABG surgery. The model identified four independent risk factors: duration of stay in the intensive care unit (ICU) (OR 0.761), cardiopulmonary bypass time (OR 1.019), prolonged aortic occlusion time (OR 0.981) and re-operation for bleeding (OR 0.180). Based on these factors, an individualized risk prediction model was constructed. The C-index values of the modeling group and the verification group were 0.805 [95% CI (0.7303-0.8793)] and 0.785 [95% CI (0.6932-0.8766)], respectively, which indicated a good accuracy and discrimination of this model. The calibration and standard curves showed similar results, which further supported the accuracy of the risk prediction model. In conclusion, ICU time, cardiopulmonary bypass time, aortic occlusion time and re-operation for bleeding are identified as independent risk factors for gastrointestinal bleeding in patients after CABG. The risk prediction model developed in this study demonstrates strong predictive performance and provides valuable insights for clinical medical professionals in evaluating gastrointestinal complications in CABG patients.

摘要

本研究旨在开发一种用于预测冠状动脉旁路移植术(CABG)后患者胃肠道出血的风险预测模型,并评估其准确性。我们对 2022 年 1 月至 2022 年 12 月期间在我院接受全身麻醉下 CABG 的 232 例患者进行了回顾性分析。将患者分为胃肠道出血(GIB)组(n=52)和无胃肠道出血(非 GIB)组(n=180)。使用卡方检验、t 检验和多因素逻辑回归分析分析 CABG 后患者发生胃肠道出血的独立危险因素。基于确定的危险因素建立预测模型。为了验证预测模型的准确性,选择 2023 年 1 月至 6 月符合标准的 161 例患者进行验证组,使用 Bootstrap 方法进行内部验证。通过曲线下面积(AUC)评估预测模型的判别能力,AUC 越高表示模型的判别效果越强。本研究开发了一种用于预测冠状动脉旁路移植术后胃肠道出血的风险预测模型。该模型确定了四个独立的危险因素:重症监护病房(ICU)停留时间(OR 0.761)、体外循环时间(OR 1.019)、主动脉阻断时间延长(OR 0.981)和再次手术出血(OR 0.180)。基于这些因素,构建了个体化风险预测模型。建模组和验证组的 C 指数值分别为 0.805[95%CI(0.7303-0.8793)]和 0.785[95%CI(0.6932-0.8766)],表明该模型具有良好的准确性和判别能力。校准和标准曲线显示出相似的结果,进一步支持了风险预测模型的准确性。总之,ICU 时间、体外循环时间、主动脉阻断时间和再次手术出血被确定为 CABG 后患者胃肠道出血的独立危险因素。本研究中开发的风险预测模型具有较强的预测性能,为临床医务人员评估 CABG 患者的胃肠道并发症提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b142/10713607/ab7a1aa2eb60/41598_2023_49405_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验