Jana Asmita, Yang Peidong, Qian Jin, Crumlin Ethan J
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Department of Chemistry, University of California, Berkeley, California 94720, United States.
J Phys Chem Lett. 2025 Jun 12;16(23):5769-5778. doi: 10.1021/acs.jpclett.5c00675. Epub 2025 Jun 3.
Nanoconfined electrocatalysts demonstrate enhanced selectivity and activity owing to new phenomena emerging from chemical species confined at the interface. Creating these nanoconfined pockets at the interface is not trivial. We need highly negative potentials to create the pockets in metal/ligand catalysts like Ag-nanoparticle/ordered ligand interlayer catalysts. Lowering this activation potential can make the electrocatalysis more energy-efficient, and changes in the environment can impact this potential. We used Density Functional Theory (DFT) to evaluate the impact of ligand length and density, interfacial protons, and surface defects like Ag vacancies and Cu and Au dopants. The nanoconfined configuration is stabilized when the ligands are longer and more densely packed, leading to better agglomeration. It is also stabilized when the ligands adsorb protons and when the ligands detach from the surface easily owing to lower charge transfer. Au-doped surfaces displayed the lowest charge transfer and decreased the activation potential.
由于受限在界面处的化学物种出现新现象,纳米限域电催化剂表现出增强的选择性和活性。在界面处创建这些纳米限域区域并非易事。在金属/配体催化剂(如银纳米颗粒/有序配体夹层催化剂)中创建这些区域需要非常负的电位。降低这种活化电位可以使电催化更节能,并且环境变化会影响该电位。我们使用密度泛函理论(DFT)来评估配体长度和密度、界面质子以及诸如银空位、铜和金掺杂剂等表面缺陷的影响。当配体更长且堆积更密集时,纳米限域构型会更稳定,从而导致更好的团聚。当配体吸附质子以及由于电荷转移较低而使配体容易从表面脱离时,纳米限域构型也会更稳定。金掺杂的表面显示出最低的电荷转移并降低了活化电位。