Fazlali Mahbod, Nasira Maedeh, Moravej Ali
Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
Curr Allergy Asthma Rep. 2025 Jun 3;25(1):27. doi: 10.1007/s11882-025-01207-8.
This review explores the transformative potential of artificial intelligence (AI) and next-generation sequencing (NGS) in allergy diagnostics and treatment. It focuses on leveraging these technologies to enhance precision in biomarker discovery, patient stratification, and personalized management strategies for allergic diseases. RECENT FINDINGS: AI-driven algorithms, particularly machine learning and deep learning, have enabled the identification of complex molecular patterns and predictive markers in allergies, such as IgE levels and cytokine profiles. Integration with NGS techniques, including single-cell RNA sequencing, has uncovered unique immune response signatures, providing insights into molecular mechanisms driving allergic reactions. These innovations have advanced diagnostic accuracy, treatment personalization, and real-time monitoring capabilities, especially in allergen immunotherapy. Combining AI and NGS technologies represents a paradigm shift in allergy research and clinical practice. These advancements facilitate precision diagnostics and personalized treatments, ensuring safer and more effective interventions tailored to individual patient profiles. Despite data integration and clinical implementation challenges, these technologies promise improved outcomes and quality of life for allergy sufferers.
本综述探讨人工智能(AI)和下一代测序(NGS)在过敏诊断和治疗中的变革潜力。重点在于利用这些技术提高生物标志物发现、患者分层以及过敏性疾病个性化管理策略的精准度。
人工智能驱动的算法,特别是机器学习和深度学习,已能够识别过敏中的复杂分子模式和预测标志物,如IgE水平和细胞因子谱。与包括单细胞RNA测序在内的NGS技术相结合,揭示了独特的免疫反应特征,为驱动过敏反应的分子机制提供了见解。这些创新提高了诊断准确性、治疗个性化和实时监测能力,尤其是在变应原免疫治疗方面。将人工智能和NGS技术相结合代表了过敏研究和临床实践的范式转变。这些进展有助于精准诊断和个性化治疗,确保根据个体患者情况制定更安全、更有效的干预措施。尽管存在数据整合和临床实施方面的挑战,但这些技术有望改善过敏患者的治疗效果和生活质量。