一种将PPG质量评估与DNN建模相结合的运动心率估计新方法。
A novel approach to exercise heart rate estimation combining PPG quality assessment with DNN modeling.
作者信息
Wu Mengshan, Chen Xiang
机构信息
School of Microelectronics, University of Science and Technology of China, Hefei, China.
出版信息
Med Biol Eng Comput. 2025 Jun 4. doi: 10.1007/s11517-025-03379-x.
This paper proposes a novel approach for exercise heart rate (HR) estimation by integrating PPG quality assessment with deep neural network (DNN) modeling. A frequency-domain kurtosis (kurtF) metric is introduced to identify high-quality PPG samples, optimizing DNN training data and mitigating motion artifacts. An E-K scatter plot is used to visualize sample quality distribution, aiding dataset variability analysis. The proposed DNN model, designed for single-channel PPG input, demonstrates strong HR estimation performance on public datasets, achieving a mean absolute error (MAE) values of 3.76 bpm (PPG_DaLiA) and 3.18 bpm (IEEE-Training). Theoretical analysis and experimental validation confirm that prioritizing high-quality samples enhances model stability, accuracy, and generalizability. Additionally, a dataset quality analysis method is introduced to facilitate comparative assessments. The kurtF metric and quality-driven sample selection strategy provide a robust framework for improving HR estimation, even in data-limited scenarios. This study underscores the importance of integrating sample quality assessment into HR estimation workflows, paving the way for more accurate and reliable PPG-based HR monitoring during exercise.
本文提出了一种通过将PPG质量评估与深度神经网络(DNN)建模相结合来估计运动心率(HR)的新方法。引入了频域峰度(kurtF)指标来识别高质量的PPG样本,优化DNN训练数据并减轻运动伪影。使用E-K散点图来可视化样本质量分布,辅助数据集变异性分析。所提出的DNN模型专为单通道PPG输入设计,在公共数据集上展示了强大的HR估计性能,在PPG_DaLiA数据集上平均绝对误差(MAE)值为3.76 bpm,在IEEE-Training数据集上为3.18 bpm。理论分析和实验验证证实,优先选择高质量样本可提高模型的稳定性、准确性和通用性。此外,还引入了一种数据集质量分析方法以促进比较评估。kurtF指标和质量驱动的样本选择策略为改进HR估计提供了一个强大的框架,即使在数据有限的情况下也是如此。本研究强调了将样本质量评估纳入HR估计工作流程的重要性,为运动期间基于PPG的更准确可靠的HR监测铺平了道路。