Li Yikang, Xu Lyuan, Zuo Lianrui, Chang Yukie, Ding Zhaohua, Anderson Adam W, Schilling Kurt G, Gore John C, Gao Yurui
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States.
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United State.
bioRxiv. 2025 May 13:2025.05.07.652697. doi: 10.1101/2025.05.07.652697.
Like gray matter (GM), white matter (WM) BOLD functional signals change in preclinical AD. However, the potential of WM BOLD for identifying preclinical AD remains underexplored.
We developed BrainVAE, a transformer-based variational autoencoder with interpretability, to classify preclinical AD and normal controls using resting-state fMRI data. We benchmarked BrainVAE against nine alternative models under three input configurations: WM-only, GM-only, and combined WM+GM. Interpretability analysis was also performed to investigate each brain region's contribution to the classification task.
BrainVAE outperformed other models and performed well (accuracy = 83.42%, F1-score = 91.62%, AUC = 64.50%) using the combined input compared to WM-only and GM-only. Specific WM bundles--including corpus callosum, fornix, and corticospinal tract-were among the most influential features contributing to the classification.
Incorporating WM BOLD signals improves the distinction of preclinical AD from controls, underscoring the potential role of WM BOLD features for detecting early-stage AD.
与灰质(GM)一样,白质(WM)的血氧水平依赖性功能信号在临床前阿尔茨海默病(AD)中会发生变化。然而,WM血氧水平依赖性功能在识别临床前AD方面的潜力仍未得到充分探索。
我们开发了BrainVAE,一种具有可解释性的基于Transformer的变分自编码器,用于使用静息态功能磁共振成像(fMRI)数据对临床前AD和正常对照进行分类。我们在三种输入配置下将BrainVAE与九个替代模型进行了基准测试:仅WM、仅GM以及组合的WM+GM。还进行了可解释性分析,以研究每个脑区对分类任务的贡献。
与仅使用WM和仅使用GM相比,BrainVAE在使用组合输入时表现优于其他模型,并且表现良好(准确率=83.42%,F1分数=91.62%,曲线下面积[AUC]=64.50%)。特定的WM束——包括胼胝体、穹窿和皮质脊髓束——是对分类贡献最大的影响因素。
纳入WM血氧水平依赖性功能信号可改善临床前AD与对照之间的区分,强调了WM血氧水平依赖性功能特征在检测早期AD中的潜在作用。