Suppr超能文献

数量性状上位性检测方法的评估

Evaluation of epistasis detection methods for quantitative phenotypes.

作者信息

Listopad Stanislav, Renjith Gauri, Peng Qian

机构信息

Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.

Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093, USA.

出版信息

bioRxiv. 2025 May 14:2025.04.30.651312. doi: 10.1101/2025.04.30.651312.

Abstract

BACKGROUND

Epistasis, or genetic interaction, has been increasingly recognized for its ubiquity and for its role in susceptibility to common human diseases, such as Alzheimer's. A wide variety of epistasis detection tools are currently available with several studies comparing the performance of methods suitable for case-control data. However, there is limited understanding of how well these tools perform with quantitative phenotypes.

METHODS

We identified six epistasis detection methods suitable for quantitative phenotype data: EpiSNP, Matrix Epistasis, MIDESP, PLINK Epistasis, QMDR, and REMMA. To evaluate these tools, we generated simulated datasets using EpiGEN. The datasets modeled various pairwise interactions between disease-associated SNPs, including dominant, multiplicative, recessive, and XOR interactions. Additionally, we assessed the BOOST and MDR algorithms on discretized (case-control) version of the datasets. These tools were then tested on the Adolescent Brain Cognitive Development (ABCD) dataset for the externalizing behavior phenotype.

RESULTS

Each tool exhibited strong performance for certain interaction types, but weaker performance for others. MDR achieved the highest overall detection rate of 60%, while EpiSNP had the lowest overall detection rate of 7%. MDR and MIDESP performed best at detecting multiplicative interactions with detection rates of 54% and 41% respectively. Both MDR and MIDESP were also effective at detecting XOR interactions with detection rates of 84% and 50% respectively. PLINK Epistasis, Matrix Epistasis, and REMMA excelled at detecting dominant interactions, all achieving a 100% detection rate. On the other hand, EpiSNP was particularly effective at detecting recessive interactions with a detection rate of 66%. When analyzing the ABCD dataset, Plink Epistasis and Plink BOOST identified SNPs within the and genes, which have been previously linked to externalizing behavior.

CONCLUSION

Since no single method consistently outperforms others across all types of epistasis, and given that the specific types of epistasis present in a dataset are often unknown, it may be more effective to use multiple epistasis detection algorithms in combination to obtain comprehensive results.

摘要

背景

上位性,即基因相互作用,因其普遍性及其在诸如阿尔茨海默病等常见人类疾病易感性中的作用而日益受到认可。目前有各种各样的上位性检测工具,并且有多项研究比较了适用于病例对照数据的方法的性能。然而,对于这些工具在定量表型方面的表现如何,人们了解有限。

方法

我们确定了六种适用于定量表型数据的上位性检测方法:EpiSNP、矩阵上位性、MIDESP、PLINK上位性、QMDR和REMMA。为了评估这些工具,我们使用EpiGEN生成了模拟数据集。这些数据集模拟了疾病相关单核苷酸多态性(SNP)之间的各种成对相互作用,包括显性、乘法、隐性和异或相互作用。此外,我们在数据集的离散化(病例对照)版本上评估了BOOST和MDR算法。然后在青少年大脑认知发展(ABCD)数据集上对这些工具进行了针对外化行为表型的测试。

结果

每种工具在某些相互作用类型上表现强劲,但在其他类型上表现较弱。MDR的总体检测率最高,为60%,而EpiSNP的总体检测率最低,为7%。MDR和MIDESP在检测乘法相互作用方面表现最佳,检测率分别为54%和百分之41。MDR和MIDESP在检测异或相互作用方面也很有效,检测率分别为84%和50%。PLINK上位性、矩阵上位性和REMMA在检测显性相互作用方面表现出色,检测率均达到100%。另一方面,EpiSNP在检测隐性相互作用方面特别有效,检测率为66%。在分析ABCD数据集时,Plink上位性和Plink BOOST识别出了此前与外化行为相关的 和 基因内的SNP。

结论

由于没有一种方法在所有类型的上位性方面都始终优于其他方法,而且鉴于数据集中存在的上位性的具体类型往往未知,组合使用多种上位性检测算法以获得全面的结果可能会更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfb/12132564/895151a221b1/nihpp-2025.04.30.651312v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验