Yang Yihe, Zhu Xiaofeng
Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, 44106, OH, USA.
medRxiv. 2025 May 13:2025.05.12.25327450. doi: 10.1101/2025.05.12.25327450.
Before applying a nonparametric model such as a generalized additive model (GAM), it is natural to ask whether a simpler parametric model suffices to capture the variation in the data. To address this fundamental question, we propose a new methodology named Test for Arbitrary Parametric Structure (TAPS), which provides estimation and inference tools to determine whether a parametric structure sufficiently describes a target function in a GAM. The key strategy of TAPS is to translate the test of parametric structure into the test of variance of the random effect, and the novelty of TAPS lies in showing how to construct this translation for an arbitrary parametric structure, including the linearity, piecewise linearity with slope changes, and linearity discontinuity with jumps. We illustrate the utility of TAPS across diverse scientific domains by using the UK Biobank data. Specifically, we applied TAPS to reveal widespread nonlinearity in polygenic risk score effects, though prediction improvement over the linear model was limited for most traits. Alternatively, we employed TAPS to identify the causal effects of retirement that change various health and lifestyle traits, using regression discontinuity and kink designs.
在应用非参数模型(如广义相加模型(GAM))之前,很自然会问一个更简单的参数模型是否足以捕捉数据中的变化。为了解决这个基本问题,我们提出了一种名为任意参数结构检验(TAPS)的新方法,它提供了估计和推断工具,以确定参数结构是否足以描述GAM中的目标函数。TAPS的关键策略是将参数结构的检验转化为随机效应方差的检验,TAPS的新颖之处在于展示了如何针对任意参数结构构建这种转化,包括线性、斜率变化的分段线性以及有跳跃的线性不连续性。我们通过使用英国生物银行数据说明了TAPS在不同科学领域的实用性。具体而言,我们应用TAPS揭示了多基因风险评分效应中广泛存在的非线性,尽管对于大多数性状而言,相对于线性模型的预测改善有限。或者,我们使用回归不连续性和拐点设计,采用TAPS来识别退休对各种健康和生活方式性状的因果效应。