Ahlqvist Viktor H, Sjöqvist Hugo, Sjölander Arvid, Berglind Daniel, Lambert Paul C, Lee Brian K, Madley-Dowd Paul
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
medRxiv. 2025 May 16:2025.05.16.25327702. doi: 10.1101/2025.05.16.25327702.
Findings from family-based analyses, such as sibling comparisons, are often reported using only odds ratios or hazard ratios. We demonstrate how this can be improved upon by applying the marginalized between-within framework.
We provide an overview of sibling comparison methods and the marginalized between-within framework, which enables estimation of absolute risks and clinically relevant metrics while accounting for shared familial confounding. We illustrate the approach using Swedish registry data to examine the association between maternal smoking and infant mortality, estimating absolute risk differences, average treatment effects, attributable fractions, and numbers needed to harm (or treat).
The marginalized between-within model decomposes effects into within- and between-family components while applying a global baseline across all families. Although it typically yields similar relative estimates to conditional logistic or stratified Cox regression, the model's specification of a baseline enables the estimation of absolute measures. In the applied example, absolute measures provided more interpretable and policy-relevant insights than relative estimates alone. Code for implementation in Stata and R is provided.
The marginalized between-within framework may strengthen the interpretability of family-based analysis by enabling absolute and policy-relevant estimates for both binary and time-to-event outcomes, moving beyond the limitations of solely relying on relative effect measures.
基于家庭的分析结果,如同胞比较,通常仅使用比值比或风险比来报告。我们展示了如何通过应用边缘化组内组间框架来改进这一点。
我们概述了同胞比较方法和边缘化组内组间框架,该框架能够在考虑共同家族混杂因素的同时估计绝对风险和临床相关指标。我们使用瑞典登记数据来说明该方法,以检验母亲吸烟与婴儿死亡率之间的关联,估计绝对风险差异、平均治疗效果、归因比例以及伤害(或治疗)所需人数。
边缘化组内组间模型将效应分解为家庭内和家庭间成分,同时在所有家庭中应用一个全局基线。尽管它通常产生与条件逻辑回归或分层Cox回归相似的相对估计值,但该模型对基线的设定使得能够估计绝对指标。在应用示例中,绝对指标比单独的相对估计提供了更具可解释性和与政策相关的见解。提供了在Stata和R中实现的代码。
边缘化组内组间框架可能通过为二元结局和事件发生时间结局提供绝对且与政策相关的估计,超越仅依赖相对效应测量的局限性,从而加强基于家庭分析的可解释性。