Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
Nat Commun. 2024 Oct 21;15(1):9065. doi: 10.1038/s41467-024-53338-7.
The anaerobic oxidation of alkanes is a microbial process that mitigates the flux of hydrocarbon seeps into the oceans. In marine archaea, the process depends on sulphate-reducing bacterial partners to exhaust electrons, and it is generally assumed that the archaeal CO-forming enzymes (CO dehydrogenase and formylmethanofuran dehydrogenase) are coupled to ferredoxin reduction. Here, we study the molecular basis of the CO-generating steps of anaerobic ethane oxidation by characterising native enzymes of the thermophile Candidatus Ethanoperedens thermophilum obtained from microbial enrichment. We perform biochemical assays and solve crystal structures of the CO dehydrogenase and formylmethanofuran dehydrogenase complexes, showing that both enzymes deliver electrons to the F cofactor. Both multi-metalloenzyme harbour electronic bridges connecting CO and formylmethanofuran oxidation centres to a bound flavin-dependent F reductase. Accordingly, both systems exhibit robust coupled F-reductase activities, which are not detected in the cell extract of related methanogens and anaerobic methane oxidisers. Based on the crystal structures, enzymatic activities, and metagenome mining, we propose a model in which the catabolic oxidising steps would wire electron delivery to F in this organism. Via this specific adaptation, the indirect electron transfer from reduced F to the sulphate-reducing partner would fuel energy conservation and represent the driving force of ethanotrophy.
烷烃的厌氧氧化是一种微生物过程,可减轻烃类渗漏到海洋中的通量。在海洋古菌中,该过程依赖于硫酸盐还原细菌伙伴来耗尽电子,并且通常假定古菌的 CO 形成酶(CO 脱氢酶和甲酰甲烷呋喃脱氢酶)与铁氧还蛋白还原偶联。在这里,我们通过对从微生物富集物中获得的嗜热古菌 Candidatus Ethanoperedens thermophilum 的天然酶进行表征,研究了厌氧乙烷氧化的 CO 生成步骤的分子基础。我们进行了生化测定并解决了 CO 脱氢酶和甲酰甲烷呋喃脱氢酶复合物的晶体结构,表明这两种酶都将电子传递给 F 辅因子。两种多金属酶都具有电子桥,将 CO 和甲酰甲烷呋喃氧化中心连接到结合的黄素依赖性 F 还原酶。因此,这两个系统都表现出强大的偶联 F 还原酶活性,而在相关产甲烷菌和厌氧甲烷氧化菌的细胞提取物中则未检测到这种活性。基于晶体结构、酶活性和宏基因组挖掘,我们提出了一个模型,即该模型的分解代谢氧化步骤将电子传递到 F 中。通过这种特定的适应,从还原的 F 到硫酸盐还原伙伴的间接电子传递将为能量守恒提供动力,并代表了乙醇营养的驱动力。