Suppr超能文献

基于似然调度分数的全三维PET图像重建生成模型

Likelihood-Scheduled Score-Based Generative Modeling for Fully 3D PET Image Reconstruction.

作者信息

Webber George, Mizuno Yuya, Howes Oliver D, Hammers Alexander, King Andrew P, Reader Andrew J

出版信息

IEEE Trans Med Imaging. 2025 Jun 4;PP:1. doi: 10.1109/TMI.2025.3576483.

Abstract

Medical image reconstruction with pretrained score-based generative models (SGMs) has advantages over other existing state-of-the-art deep-learned reconstruction methods, including improved resilience to different scanner setups and advanced image distribution modeling. SGM-based reconstruction has recently been applied to simulated positron emission tomography (PET) datasets, showing improved contrast recovery for out-of-distribution lesions relative to the state-of-the-art. However, existing methods for SGM-based reconstruction from PET data suffer from slow reconstruction, burdensome hyperparameter tuning and slice inconsistency effects (in 3D). In this work, we propose a practical methodology for fully 3D reconstruction that accelerates reconstruction and reduces the number of critical hyperparameters by matching the likelihood of an SGM's reverse diffusion process to a current iterate of the maximum-likelihood expectation maximization algorithm. Using the example of low-count reconstruction from simulated F]DPA-714 datasets, we show our methodology can match or improve on the NRMSE and SSIM of existing state-of-the-art SGM-based PET reconstruction while reducing reconstruction time and the need for hyperparameter tuning. We evaluate our methodology against state-of-the-art supervised and conventional reconstruction algorithms. Finally, we demonstrate a first-ever implementation of SGM-based reconstruction for real 3D PET data, specifically [F]DPA-714 data, where we integrate perpendicular pre-trained SGMs to eliminate slice inconsistency issues.

摘要

使用预训练的基于分数的生成模型(SGM)进行医学图像重建比其他现有的深度学习重建方法具有优势,包括对不同扫描仪设置的更强适应性以及先进的图像分布建模。基于SGM的重建最近已应用于模拟正电子发射断层扫描(PET)数据集,相对于现有技术,其显示出对分布外病变的对比度恢复有所改善。然而,现有的基于PET数据的SGM重建方法存在重建速度慢、超参数调整繁琐以及(三维中的)切片不一致效应等问题。在这项工作中,我们提出了一种用于全三维重建的实用方法,通过将SGM反向扩散过程的似然性与最大似然期望最大化算法的当前迭代相匹配,来加速重建并减少关键超参数的数量。以从模拟的[F]DPA - 714数据集进行低计数重建为例,我们表明我们的方法可以在减少重建时间和超参数调整需求的同时,与现有的基于SGM的PET重建的归一化均方根误差(NRMSE)和结构相似性指数(SSIM)相匹配或有所改进。我们将我们的方法与现有的监督式和传统重建算法进行了评估。最后,我们展示了基于SGM的重建在真实三维PET数据(具体为[F]DPA - 714数据)上的首次实现,我们整合了垂直预训练的SGM以消除切片不一致问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c26/7617813/db481eab5508/EMS206236-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验