Suppr超能文献

迈向可持续解决方案:通过增强深度卷积神经网络实现有效的垃圾分类框架。

Towards sustainable solutions: Effective waste classification framework via enhanced deep convolutional neural networks.

作者信息

Islam Md Minhazul, Hasan S M Mahedy, Hossain Md Rakib, Uddin Md Palash, Mamun Md Al

机构信息

Department of Electronics and Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

出版信息

PLoS One. 2025 Jun 4;20(6):e0324294. doi: 10.1371/journal.pone.0324294. eCollection 2025.

Abstract

As industrialization and the development of smart cities progress, effective waste collection, classification, and management have become increasingly vital. Recycling processes depend on accurately identifying and restoring waste materials to their original states, essential for reducing pollution and promoting environmental sustainability. In recent years, deep learning (DL) techniques have been applied strategically to enhance waste management processes, including capturing, classifying, composting, and disposing of waste. In light of the current context, the study presents an innovative waste classification model that utilizes a tailored DenseNet201 architecture coupled with an integrated Squeeze and Excitation (SE) attention mechanism and the fusion of parallel Convolutional Neural Network (CNN) branches. The integration of SE attention enables squeezing the irrelevant features and excites the important ones and the fusion of parallel CNN branches enhances the extraction of intricate, deeper, and more distinguishable features from waste data. The evaluation of the model across four publicly available datasets, along with three additional datasets to enhance waste diversity and the model's reliability, and the incorporation of Grad-CAM to visualize and interpret the model's focus areas for transparent decision-making, confirms its effectiveness in improving waste management practices. Furthermore, this model's successful deployment in a web-based sorting system marks a tangible stride in translating theoretical advancements into on-the-ground implementation, promising heightened efficiency and scalability in waste management practices. This work presents a precise solution for adaptable waste classification, heralding a paradigm shift in global waste disposal norms.

摘要

随着工业化和智慧城市的发展,有效的垃圾收集、分类和管理变得越来越重要。回收过程依赖于准确识别并将废料恢复到原始状态,这对于减少污染和促进环境可持续性至关重要。近年来,深度学习(DL)技术已被战略性地应用于加强垃圾管理过程,包括垃圾的捕获、分类、堆肥和处理。鉴于当前背景,本研究提出了一种创新的垃圾分类模型,该模型采用定制的DenseNet201架构,结合集成的挤压与激励(SE)注意力机制以及并行卷积神经网络(CNN)分支的融合。SE注意力的集成能够挤压无关特征并激发重要特征,并行CNN分支的融合增强了从垃圾数据中提取复杂、更深层次和更具辨识度特征的能力。在四个公开可用数据集以及另外三个数据集上对该模型进行评估,以增强垃圾多样性和模型的可靠性,并结合Grad-CAM来可视化和解释模型的关注区域以进行透明决策,证实了其在改善垃圾管理实践方面的有效性。此外,该模型在基于网络的分类系统中的成功部署标志着在将理论进展转化为实际应用方面迈出了切实的一步,有望提高垃圾管理实践的效率和可扩展性。这项工作为适应性垃圾分类提供了一个精确的解决方案,预示着全球垃圾处理规范的范式转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/527a/12136365/40cd26abfe4b/pone.0324294.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验