Zafar Imran, Unar Ahsanullah, Khan Najeeb Ullah, Abalkhail Adil, Jamal Adil
Department of Biochemistry and Biotechnology, Faculty of Sciences, The University of Faisalabad (TUF), Faisalabad, Punjab 38000, Pakistan.
Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy.
Comput Biol Chem. 2025 Dec;119:108535. doi: 10.1016/j.compbiolchem.2025.108535. Epub 2025 Jun 2.
The explosive growth in next-generation high-throughput technologies has driven modern molecular biology into the exabyte era, producing an unparalleled volume of biological data across genomics, proteomics, metabolomics, and biomedical imaging. Although this massive expansion of data can power future biological discoveries and precision medicine, it presents considerable challenges, including computational bottlenecks, fragmented data landscapes, and ethical issues related to privacy and accessibility. We highlight novel contributions, such as the application of blockchain technologies to ensure data integrity and traceability, a relatively underexplored solution in this context. We describe how artificial intelligence (AI), machine learning (ML), and cloud computing fundamentally reshape and provide scalable solutions for these challenges by enabling near real-time pattern recognition, predictive modelling, and integrated data analysis. In particular, the use of federated learning models allows privacy-preserving collaboration across institutions. We emphasise the importance of open science, FAIR principles (Findable, Accessible, Interoperable, and Reusable), and blockchain-based audit trails to enhance global collaboration, reproducibility, and data security. By processing multi-omics datasets in integrated formats, we can enhance our understanding of disease mechanisms, facilitate biomarker discovery, and develop AI-assisted, personalised therapeutics. Addressing these technical and ethical demands requires robust governance frameworks that protect sensitive data without hindering innovation. This paper underscores a shift toward more secure, transparent, and collaborative biomedical research, marking a decisive step toward clinical transformation.
下一代高通量技术的爆炸式增长已将现代分子生物学带入了艾字节时代,在基因组学、蛋白质组学、代谢组学和生物医学成像等领域产生了前所未有的大量生物数据。尽管这些海量数据的扩展可为未来的生物学发现和精准医学提供动力,但也带来了诸多挑战,包括计算瓶颈、数据格局碎片化以及与隐私和可访问性相关的伦理问题。我们强调了一些新颖的贡献,例如应用区块链技术来确保数据完整性和可追溯性,这在这种背景下是一个相对未被充分探索的解决方案。我们描述了人工智能(AI)、机器学习(ML)和云计算如何通过实现近实时模式识别、预测建模和综合数据分析,从根本上重塑并为这些挑战提供可扩展的解决方案。特别是,联合学习模型的使用允许跨机构进行隐私保护协作。我们强调开放科学、FAIR原则(可查找、可访问、可互操作和可重用)以及基于区块链的审计跟踪对于加强全球协作、可重复性和数据安全的重要性。通过以综合格式处理多组学数据集,我们可以加深对疾病机制的理解,促进生物标志物发现,并开发人工智能辅助的个性化疗法。应对这些技术和伦理需求需要强大的治理框架,以保护敏感数据而不阻碍创新。本文强调了向更安全、透明和协作的生物医学研究的转变,标志着向临床转化迈出了决定性的一步。