Suppr超能文献

具有扭曲衍射神经网络的全息复用超表面

Holographic multiplexing metasurface with twisted diffractive neural network.

作者信息

Fan Zhixiang, Qian Chao, Jia Yuetian, Feng Yiming, Qian Haoliang, Li Er-Ping, Fleury Romain, Chen Hongsheng

机构信息

ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, 310027, China.

ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou, 310027, China.

出版信息

Nat Commun. 2024 Oct 31;15(1):9416. doi: 10.1038/s41467-024-53749-6.

Abstract

As the cornerstone of AI generated content, data drives human-machine interaction and is essential for developing sophisticated deep learning agents. Nevertheless, the associated data storage poses a formidable challenge from conventional energy-intensive planar storage, high maintenance cost, and the susceptibility to electromagnetic interference. In this work, we introduce the concept of metasurface disk, meta-disk, to expand the capacity limits of optical holographic storage by leveraging uncorrelated structural twist. We develop a physical twisted neural network to describe the optical behavior of the meta-disk and conduct a comprehensive lateral error analysis, where the meta-disk stores large volumes of information through internal structural multiplexing. Two-layer 640 µm x 640 µm meta-disk is sufficient to store over hundreds of high-fidelity images with SSIM of 0.8. By harnessing advanced three-dimensional (3D) printing technology, optical holographic storage is experimentally demonstrated with Pancharatnam-Berry metasurfaces. Our technology provides essential backing for the next generation of optical storage, display, encryption, and multifunctional optical analog computing.

摘要

作为人工智能生成内容的基石,数据驱动人机交互,对于开发复杂的深度学习智能体至关重要。然而,相关的数据存储面临着来自传统高能耗平面存储、高维护成本以及电磁干扰敏感性等方面的巨大挑战。在这项工作中,我们引入了超表面磁盘(元磁盘)的概念,通过利用不相关的结构扭曲来扩展光学全息存储的容量极限。我们开发了一种物理扭曲神经网络来描述元磁盘的光学行为,并进行了全面的横向误差分析,其中元磁盘通过内部结构复用存储大量信息。两层640 µm x 640 µm的元磁盘足以存储数百张结构相似性指数(SSIM)为0.8的高保真图像。通过利用先进的三维(3D)打印技术,使用潘查拉特纳姆 - 贝里超表面对光学全息存储进行了实验验证。我们的技术为下一代光学存储、显示、加密和多功能光学模拟计算提供了重要支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验