Park Chang Eun, Choi Byungjin, Park Rae Woong, Kwak Dong Wook, Ko Hyun Sun, Seong Won Joon, Cha Hyun-Hwa, Kim Hyun Mi, Lee Jisun, Seol Hyun-Joo, Pyeon Seungyeon, Hong Soon-Cheol, Kang Yun Dan, Oh Kyung Joon, Park Joong Shin, Kim Young Nam, Kim Young Ah, Kim Yoon Ha, Kim Gwang Jun, Kim Miran, Chang Hye Jin
Department of Convergence Healthcare Medicine, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
Department of Biomedical Informatics, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
Sci Rep. 2025 Jun 4;15(1):19617. doi: 10.1038/s41598-025-02849-4.
Timely detection of abnormal cardiotocography (CTG) during labor plays a crucial role in enhancing fetal prognosis. Recent research has explored the use of deep learning for CTG interpretation, most studies rely on small, localized datasets or focus on outcomes less relevant to clinical practice. To address these limitations, we developed a clinically applicable model using a large-scale, nationwide CTG dataset with reliable annotations provided by a board-certified obstetrician. Our study utilized 22,522 deliveries from 14 hospitals, each including cardiotocography (CTG) recordings of up to 75 min in length. The CTG signals were segmented into 5-minute intervals, resulting in a total of 519,800 person-minutes of analyzed data. We trained and validated a deep learning model based on CTG segments for classifying normal and abnormal CTGs. In the independent test dataset, the model achieved an AUC (area under the receiver operating characteristic curve) of 0.880 and PRC (area under the precision-recall curve) of 0.625 in internal tests. External tests across three datasets achieved AUCs of 0.862, 0.895, and 0.862 and PRCs of 0.553, 0.615, and 0.601. Our study results show the potential of the deep learning for automated CTG interpretation. We will evaluate this model in future prospective studies to assess the model's clinical applicability.
分娩期间及时检测异常胎心监护(CTG)对改善胎儿预后起着至关重要的作用。最近的研究探索了使用深度学习来解读CTG,但大多数研究依赖于小型的局部数据集,或者关注与临床实践相关性较低的结果。为了解决这些局限性,我们使用了一个大规模的全国性CTG数据集,并由一位获得委员会认证的产科医生提供可靠注释,开发了一个临床适用模型。我们的研究利用了来自14家医院的22522例分娩数据,每家医院的胎心监护(CTG)记录时长可达75分钟。CTG信号被分割为5分钟的间隔,从而得到总共519800人·分钟的分析数据。我们基于CTG片段训练并验证了一个深度学习模型,用于对正常和异常CTG进行分类。在独立测试数据集中,该模型在内部测试中的受试者操作特征曲线下面积(AUC)为0.880,精确召回率曲线下面积(PRC)为0.625。在三个数据集上的外部测试中,AUC分别为0.862、0.895和0.862,PRC分别为0.553、0.615和0.601。我们的研究结果显示了深度学习在自动解读CTG方面的潜力。我们将在未来的前瞻性研究中评估该模型,以评估其临床适用性。