Chen Hong, Schoch Roland, Chotard Jean-Noel, Thiebes Yannick M, Wissel Kerstin, Niewa Rainer, Bauer Matthias, Clemens Oliver
University of Stuttgart, Institute for Materials Science, Materials Synthesis Group, Heisenbergstraße 3, 70569, Stuttgart, Germany.
Paderborn University, Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Warburger Str. 100, 33098, Paderborn, Germany.
Small Methods. 2025 Aug;9(8):e2500374. doi: 10.1002/smtd.202500374. Epub 2025 Jun 4.
To improve the performance of high-energy-density electrode materials for all-solid-state fluoride-ion batteries (ASSFIBs), it is important to understand the structure and phase evolution during operation, which is closely correlated to capacity fading. In this study, an operando cell is designed compatible with laboratory X-ray diffraction (XRD) to monitor real-time structural changes of bismuth trifluoride (BiF) cathodes and degradation of the ionic conductor BaSnF under negative potentials at 100 °C. Supported by ex-situ XRD, our results reveal a multi-step defluorination of BiF: from orthorhombic (o-BiF) to cubic (c-BiF), then to distorted orthorhombic (o'-BiF), and finally to metallic bismuth (Bi), indicating partial intercalation-type character. Formation of bismuth oxidefluoride (BiOF) beyond 200 mAh g is attributed to oxygen impurities introduced via solid-state synthesis. operando X-ray absorption spectroscopy (XAS) confirms a continuous reduction of Bi to Bi with intermediate phases. Rietveld refinement quantifies the phase fractions and structural transitions, enabling a model for BiF defluorination. Comparison of operando XRD and XAS reveals that BaSnF contributes transport of both fluoride and oxygen impurities, leading to BiOF formation. BaSnF also exhibits a broad stability window, with degradation occurring below -200 mV, rather than the expected -50 mV vs. Sn/SnF.
为了提高全固态氟离子电池(ASSFIBs)的高能量密度电极材料的性能,了解其运行过程中的结构和相演变非常重要,这与容量衰减密切相关。在本研究中,设计了一种与实验室X射线衍射(XRD)兼容的原位电池,以监测三氟化铋(BiF)阴极在100°C负电位下的实时结构变化以及离子导体BaSnF的降解。在外延XRD的支持下,我们的结果揭示了BiF的多步脱氟过程:从正交晶系(o-BiF)到立方晶系(c-BiF),再到扭曲的正交晶系(o'-BiF),最后到金属铋(Bi),表明具有部分嵌入型特征。超过200 mAh g时形成的氟氧化铋(BiOF)归因于固态合成引入的氧杂质。原位X射线吸收光谱(XAS)证实了Bi通过中间相连续还原为Bi。Rietveld精修量化了相分数和结构转变,从而建立了BiF脱氟模型。原位XRD和XAS的比较表明,BaSnF有助于氟化物和氧杂质的传输,导致BiOF的形成。BaSnF还表现出较宽的稳定性窗口,在低于-200 mV时发生降解,而不是相对于Sn/SnF预期的-50 mV。