From the Center for Evidence Synthesis in Health and Department of Health Services, Policy & Practice, School of Public Health, Brown University, Providence, RI.
Department of Epidemiology, School of Public Health, Brown University, Providence, RI.
Epidemiology. 2020 May;31(3):334-344. doi: 10.1097/EDE.0000000000001177.
We take steps toward causally interpretable meta-analysis by describing methods for transporting causal inferences from a collection of randomized trials to a new target population, one trial at a time and pooling all trials. We discuss identifiability conditions for average treatment effects in the target population and provide identification results. We show that the assumptions that allow inferences to be transported from all trials in the collection to the same target population have implications for the law underlying the observed data. We propose average treatment effect estimators that rely on different working models and provide code for their implementation in statistical software. We discuss how to use the data to examine whether transported inferences are homogeneous across the collection of trials, sketch approaches for sensitivity analysis to violations of the identifiability conditions, and describe extensions to address nonadherence in the trials. Last, we illustrate the proposed methods using data from the Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis Trial.
我们通过描述将因果推断从一组随机试验传输到新的目标人群的方法来实现可解释的元分析,每次试验一次并汇集所有试验。我们讨论了目标人群中平均治疗效果的可识别性条件,并提供了识别结果。我们表明,允许从集合中的所有试验推断到同一目标人群的假设对观察数据的基础法律有影响。我们提出了依赖不同工作模型的平均治疗效果估计量,并为其在统计软件中的实现提供了代码。我们讨论了如何使用数据来检查传输的推断是否在整个试验集之间具有同质性,概述了违反可识别性条件的敏感性分析方法,并描述了扩展方法以解决试验中的不依从性。最后,我们使用丙型肝炎抗病毒长期治疗肝硬化试验的数据说明了所提出的方法。