Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA.
Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
Int J Comput Assist Radiol Surg. 2020 Oct;15(10):1673-1684. doi: 10.1007/s11548-020-02226-8. Epub 2020 Jul 16.
Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).
Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.
In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°.
The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
准确的针跟踪为 MRI 引导的经皮介入提供了重要信息。在不同情况下,使用 MR 图像进行被动针跟踪会受到针诱导信号缺失特征变化的挑战。本研究旨在基于 Mask Region Proposal-Based Convolutional Neural Network(R-CNN)开发一种用于 MRI 引导介入的自动针跟踪算法。
使用 250 幅来自 85 例 MRI 引导前列腺活检病例的术中图像和 180 幅来自 MRI 引导针插入离体组织的实时图像,对 Mask R-CNN 进行了调整和训练,以分割针特征。将分割蒙版传递到针特征定位算法中,以提取针特征尖端位置和轴方向。使用 40 例 MRI 引导前列腺活检病例的 208 幅术中图像和 3 个离体组织的实时 MRI 数据集对提出的算法进行了测试。将算法结果与人工注释的参考进行了比较。
在前列腺数据集,所提出的算法实现了针特征尖端定位误差,其平均欧几里得距离(dxy)为 0.71mm,平均轴方向角度差异(dθ)为 1.28°。在 3 个实时 MRI 数据集,提出的算法实现了一致的动态针特征跟踪性能,处理时间为 75ms/图像:(a)平均 dxy=0.90mm,平均 dθ=1.53°;(b)平均 dxy=1.31mm,平均 dθ=1.9°;(c)平均 dxy=1.09mm,平均 dθ=0.91°。
基于 Mask R-CNN 的提出的算法可以准确地跟踪活体术中前列腺活检病例和离体实时 MRI 实验中不同条件下的针特征尖端和轴。该算法实现了实时的像素级跟踪精度,具有辅助 MRI 引导经皮介入的潜力。