Suppr超能文献

重症患者急性肾损伤中机器学习衍生的多变量肾功能轨迹:一项多中心回顾性研究。

Machine learning-derived multivariate renal function trajectories in acute kidney injury in critically ill patients: a multicentre retrospective study.

作者信息

Lin Jiaxi, Liu Lihe, Zhu Shiqi, Gao Jingwen, Liu Lu, Hong Hao, Wei Yao, Yang Jing, Liu Xiaolin, Li Rui, Zhu Jinzhou

机构信息

Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, China.

Suzhou Clinical Center of Digestive Diseases, Suzhou, China.

出版信息

Clin Kidney J. 2025 May 6;18(6):sfaf142. doi: 10.1093/ckj/sfaf142. eCollection 2025 Jun.

Abstract

BACKGROUND

Acute kidney injury (AKI) exhibits considerable heterogeneity. The objective of the current study was to identify AKI subphenotypes in intensive care unit (ICU) patients using multivariate renal function trajectories.

METHODS

A retrospective study was performed on two independent datasets: the MIMIC-IV and eICU datasets. Using group-based multivariate trajectory modelling (GBMTM), we identified AKI subphenotypes based on trajectories of estimated glomerular filtration rate (eGFR) and urine output (UO). Multivariate Cox regression was applied to quantify the risk associated with the AKI subphenotype concerning clinical outcomes.

RESULTS

Our study enrolled a total of 17 113 ICU patients diagnosed with AKI, revealing four AKI subphenotypes via GBMTM. Subphenotype 1, characterized by a swift decrease in eGFR coupled with a gradual increase in UO, exhibited the highest mortality rates (24% in the MIMIC-IV cohort, 20% in the eICU cohort). Conversely, subphenotype 4, featuring a marked increase in eGFR alongside stable UO levels, demonstrated the most favourable prognosis (15% mortality in the MIMIC-IV cohort, 8% in the eICU cohort). Subphenotypes 2 and 3 shared similar eGFR trends, however, subphenotype 2 experienced a rapid decrease in UO, whereas subphenotype 3 maintained stability in this regard. Across both datasets, subphenotype 4 showed a significantly reduced risk of mortality compared with subphenotype 1 {hazard ratio [HR] 0.72 [95% confidence interval (CI) 0.60-0.81],  < .001 in the MIMIC-IV cohort; HR 0.49 [95% CI 0.37-0.64],  < .001 in the eICU cohort}.

CONCLUSIONS

This study differentiated and stratified AKI subphenotypes among ICU patients by leveraging multivariate renal function trajectories, laying a foundation for personalized therapeutic strategies.

摘要

背景

急性肾损伤(AKI)具有显著的异质性。本研究的目的是使用多变量肾功能轨迹识别重症监护病房(ICU)患者的AKI亚表型。

方法

对两个独立数据集进行回顾性研究:MIMIC-IV和eICU数据集。使用基于组的多变量轨迹建模(GBMTM),我们根据估计肾小球滤过率(eGFR)和尿量(UO)轨迹识别AKI亚表型。应用多变量Cox回归量化与AKI亚表型相关的临床结局风险。

结果

我们的研究共纳入17113例诊断为AKI的ICU患者,通过GBMTM揭示了四种AKI亚表型。亚表型1的特征是eGFR迅速下降,同时UO逐渐增加,其死亡率最高(MIMIC-IV队列中为24%,eICU队列中为20%)。相反亚表型4的特征是eGFR显著增加,同时UO水平稳定,显示出最有利的预后(MIMIC-IV队列中死亡率为15%,eICU队列中为8%)。亚表型2和3具有相似的eGFR趋势,然而,亚表型中的尿量迅速减少,而亚表型3在这方面保持稳定。在两个数据集中,与亚表型1相比,亚表型4的死亡风险显著降低{MIMIC-IV队列中的风险比[HR]为0.72[95%置信区间(CI)0.60-0.81],<0.001;eICU队列中的HR为0.49[95%CI 0.37-0.64],<0.001}。

结论

本研究通过利用多变量肾功能轨迹对ICU患者的AKI亚表型进行了区分和分层,为个性化治疗策略奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d1b/12134892/df3c7fc83335/sfaf142fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验