Suppr超能文献

稀土掺杂氧化物中电荷俘获缺陷的全光控制。

All-optical control of charge-trapping defects in rare-earth doped oxides.

作者信息

França Leonardo V S, Doshi Shaan, Zhang Haitao, Zhong Tian

机构信息

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.

Corning Research & Development Corporation, Sullivan Park, Painted Post, New York, 14870, USA.

出版信息

Nanophotonics. 2025 Feb 14;14(11):1827-1835. doi: 10.1515/nanoph-2024-0635. eCollection 2025 Jun.

Abstract

Charge-trapping defects in crystalline solids play important roles in applications ranging from microelectronics, optical storage, sensing and quantum technologies. On one hand, depleting trapped charges in the host matrix reduces charge noise and enhances coherence of solid-state quantum emitters. On the other hand, stable charge traps can enable high-density optical storage systems. Here we report all-optical control of charge-trapping defects optical charge trapping (OCT) spectroscopy of a rare-earth ion doped oxide (YO). Charge trapping is realized by low intensity optical excitation in the 200-375 nm range. Charge detrapping or depletion is carried out by optically stimulated luminescence (OSL) under 532 nm stimulation. Using a Pr-doped YO polycrystalline ceramic host matrix, we observe charging pathways the inter-band optical absorption of YO and the 4f-5d transitions of Pr. We demonstrate effective control of the density of trapped charges within the YO matrix at ambient environment. These results point to a viable method for controlling the local charge environment in rare-earth doped crystals all-optical means, and pave the way for further development of efficient optical storage technologies with ultrahigh storage capacity, as well as for the localized control of quantum coherence in rare-earth doped solids.

摘要

晶体固体中的电荷俘获缺陷在从微电子、光存储、传感和量子技术等广泛的应用中发挥着重要作用。一方面,耗尽主体基质中俘获的电荷可降低电荷噪声并增强固态量子发射器的相干性。另一方面,稳定的电荷陷阱可实现高密度光存储系统。在此,我们报告了电荷俘获缺陷的全光控制——一种稀土离子掺杂氧化物(YO)的光电荷俘获(OCT)光谱。电荷俘获通过200 - 375纳米范围内的低强度光激发来实现。电荷脱俘或耗尽通过532纳米刺激下的光激发发光(OSL)来进行。使用掺Pr的YO多晶陶瓷主体基质,我们观察到了YO的带间光吸收以及Pr的4f - 5d跃迁的充电途径。我们展示了在环境条件下对YO基质内俘获电荷密度的有效控制。这些结果指出了一种通过全光手段控制稀土掺杂晶体中局部电荷环境的可行方法,并为具有超高存储容量的高效光存储技术的进一步发展以及稀土掺杂固体中量子相干的局部控制铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53bc/12133311/9d32fd016f30/j_nanoph-2024-0635_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验