Crookes Angus, Yuen Ben, Demetriadou Angela
School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham, UK.
Nanophotonics. 2025 Mar 21;14(11):2065-2073. doi: 10.1515/nanoph-2024-0618. eCollection 2025 Jun.
Plasmonic nanocavities enable access to the quantum properties of matter but are often simplified to single mode models despite their complex multimode structure. Here, we show that off-resonant plasmonic modes in fact play a crucial role in strong coupling and determine the onset of a novel collective interaction. Our analysis reveals that strongly coupled plasmonic modes introduce up to ( + 1)/2 oscillation frequencies that depend on their coupling strengths and detuning's from the quantum emitter. Furthermore, we identify three distinct regions as the coupling strength increases: (1) single mode, (2) multimode and (3) collective multimode strong coupling. Our findings enhance the understanding of quantum dynamics in realistic plasmonic environments and demonstrate their potential to achieve ultra-fast energy transfer in light-driven quantum technologies.
等离子体纳米腔能够实现对物质量子特性的研究,但尽管其具有复杂的多模结构,却常常被简化为单模模型。在此,我们表明非共振等离子体模式实际上在强耦合中起着关键作用,并决定了一种新型集体相互作用的起始。我们的分析表明,强耦合等离子体模式引入了多达( + 1)/2个振荡频率,这些频率取决于它们的耦合强度以及与量子发射器的失谐。此外,随着耦合强度的增加,我们确定了三个不同的区域:(1)单模,(2)多模,以及(3)集体多模强耦合。我们的研究结果加深了对实际等离子体环境中量子动力学的理解,并展示了它们在光驱动量子技术中实现超快能量转移的潜力。