Chen Ting, Zhang Xuefeng, Yu Qunfeng, Yang Qin, Yuan Lingmin, Tong Fei
Emergency Department of Longyou County People's Hospital, Quzhou, Zhejiang, China.
Intensive Care Unit of Longyou County People's Hospital, Quzhou, Zhejiang, China.
Front Physiol. 2025 May 21;16:1560659. doi: 10.3389/fphys.2025.1560659. eCollection 2025.
To explore the construction and clinical visualization application of a mortality risk prediction model for sepsis patients based on an improved machine learning model.
This retrospective study analyzed 1,050 sepsis patients admitted to Longyou County People's Hospital between January 2010 and August 2023. Patients were divided into a survival group (n = 877) and a death group (n = 173) based on their 30-day mortality status. Clinical and laboratory data were collected and used as feature variables. A Self-Weighted Self-Evolutionary Learning Model (SWSELM) was developed to identify independent risk factors for sepsis mortality and to create a visualization system for clinical application.
The improved algorithm significantly outperformed other algorithms on 23 standard test functions. The SWSELM model achieved ROC-AUC and PR-AUC values of 0.9760 and 0.9624, respectively, on the training set, and 0.9387 and 0.9390, respectively, on the test set, both significantly higher than those of three other prediction models. The SWSELM model identified 10 important features, with multivariate logistic regression retaining five variables: B-type Natriuretic Peptide Precursor (NT-proBNP), Lactate, Albumin, Oxygenation Index, and Mean Arterial Pressure (MAP) (OR = 4.889, 3.770, 3.083, 1.872, 1.297), consistent with the top five features selected by the SWSELM model.
NT-proBNP, Lactate, Albumin, Oxygenation Index, and Mean Arterial Pressure are independent risk factors for mortality in sepsis patients. This study successfully created a self-evolutionary prediction model using machine learning methods, demonstrating significant clinical application potential and value for broader implementation.
基于改进的机器学习模型探索脓毒症患者死亡风险预测模型的构建及临床可视化应用。
本回顾性研究分析了2010年1月至2023年8月在龙游县人民医院收治的1050例脓毒症患者。根据患者30天死亡率状况将其分为生存组(n = 877)和死亡组(n = 173)。收集临床和实验室数据作为特征变量。开发了一种自加权自进化学习模型(SWSELM)以识别脓毒症死亡的独立危险因素并创建临床应用的可视化系统。
改进算法在23个标准测试函数上显著优于其他算法。SWSELM模型在训练集上的ROC-AUC和PR-AUC值分别为0.9760和0.9624,在测试集上分别为0.9387和0.9390,均显著高于其他三种预测模型。SWSELM模型识别出10个重要特征,多因素逻辑回归保留了5个变量:B型利钠肽前体(NT-proBNP)、乳酸、白蛋白、氧合指数和平均动脉压(MAP)(OR = 4.889、3.770、3.083、1.872、1.297),与SWSELM模型选择的前五个特征一致。
NT-proBNP、乳酸、白蛋白、氧合指数和平均动脉压是脓毒症患者死亡的独立危险因素。本研究成功使用机器学习方法创建了一个自进化预测模型,显示出显著的临床应用潜力和更广泛实施的价值。