Wang Yihan, Liu Shu, Spiteri Alanna G, Huynh Andrew Liem Hieu, Chu Chenyin, Masters Colin L, Goudey Benjamin, Pan Yijun, Jin Liang
The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.
Florey Department of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
Alzheimers Res Ther. 2024 Aug 1;16(1):175. doi: 10.1186/s13195-024-01540-6.
Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neuroimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we evaluate current and potential applications of ML, including its history in dementia research, how it compares to traditional statistics, the types of datasets it uses and the general workflow. Moreover, we identify the technical barriers and challenges of ML implementations in clinical practice. Overall, this review provides a comprehensive understanding of ML with non-technical explanations for broader accessibility to biomedical scientists and clinicians.
几个(国际)纵向痴呆观察数据集,涵盖人口统计学信息、神经影像学、生物标志物、神经心理学评估和多组学数据,开创了将机器学习(ML)整合到痴呆研究和临床实践中的新时代。机器学习擅长处理多模态和高维数据,已成为一种创新技术,有助于早期诊断、鉴别诊断以及预测轻度认知障碍和痴呆的发病及进展。在本综述中,我们评估了机器学习的当前和潜在应用,包括其在痴呆研究中的历史、与传统统计学的比较、所使用的数据集类型以及一般工作流程。此外,我们还确定了机器学习在临床实践中实施的技术障碍和挑战。总体而言,本综述提供了对机器学习的全面理解,并通过非技术性解释,以便生物医学科学家和临床医生更广泛地理解。