Liu Xing-Yu, Cai Wei, Chauvin Anne-Sophie, Fierz Beat, Waser Jerome
Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, 1015, Switzerland.
Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, 1015, Switzerland.
Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202507602. doi: 10.1002/anie.202507602. Epub 2025 Jun 30.
Since their discovery in 2012, carbazolyl (iso)phthalonitrile (Cz(I)PN) derivatives have found significant applications as photocatalysts (PCs) in organic chemistry. Herein, we introduce two efficient methods for incorporating carbazolyl cyanobenzenes into various peptide sequences. The first method involves a photomediated decarboxylative functionalization of the C-terminus of peptides, leading to the formation of various carbazolyl benzonitrile (CzBN) derivatives. The second method exploits a cysteine-selective SAr reaction on a fluorinated arene precursor, resulting in novel peptide-3CzIPN (triscarbazolyl-isophthalonitrile) conjugates. Both types of conjugates maintain delayed fluorescence properties, exhibit similar or wider redox potential, and possess higher excited state energy when compared to currently used cyanoarenes. We demonstrated the photocatalytic activity of these conjugates first through a photo-mediated peptide C-terminal decarboxylative alkynylation. Then, water-soluble peptide conjugates were used to catalyze a thiol-ene reaction on cysteine in aqueous media. Finally, we achieved protein labeling via aryl azide excitation both in vitro and at the cellular level using peptide-CzIPN conjugates. By incorporating a peptide ligand of the protein integrin αβ, proximity-driven labeling next to this target was realized by aryl azide excitation in living cells, showing an excellent overlap with antibody-based imaging. These findings reveal the potential of cyanoarene-peptide conjugates for proximity-driven photochemistry in a complex biological context.
自2012年被发现以来,咔唑基(异)邻苯二甲腈(Cz(I)PN)衍生物在有机化学中作为光催化剂(PCs)有了重要应用。在此,我们介绍两种将咔唑基氰基苯纳入各种肽序列的有效方法。第一种方法涉及肽C末端的光介导脱羧官能化,导致形成各种咔唑基苄腈(CzBN)衍生物。第二种方法利用在氟化芳烃前体上的半胱氨酸选择性SAr反应,得到新型肽-3CzIPN(三咔唑基-异邻苯二甲腈)缀合物。与目前使用的氰基芳烃相比,这两种类型的缀合物都保持延迟荧光特性,表现出相似或更宽的氧化还原电位,并且具有更高的激发态能量。我们首先通过光介导的肽C末端脱羧炔基化证明了这些缀合物的光催化活性。然后,水溶性肽缀合物用于在水性介质中催化半胱氨酸上的硫醇-烯反应。最后,我们使用肽-CzIPN缀合物在体外和细胞水平通过芳基叠氮化物激发实现了蛋白质标记。通过掺入蛋白质整合素αβ的肽配体,在活细胞中通过芳基叠氮化物激发实现了该靶点附近的邻近驱动标记,与基于抗体的成像显示出极好的重叠。这些发现揭示了氰基芳烃-肽缀合物在复杂生物环境中用于邻近驱动光化学的潜力。