Suppr超能文献

通过MRI扫描,使用具有时空Transformer注意力的多尺度图神经网络进行脑肿瘤自动分类和分级

Automated Brain Tumor Classification and Grading Using Multi-scale Graph Neural Network with Spatio-Temporal Transformer Attention Through MRI Scans.

作者信息

Srivastava Somya, Jain Parita, Pandey Sanjay Kr, Dubey Gaurav, Das Nripendra Narayan

机构信息

Department of Computer Science, ABES Engineering College, Ghaziabad, 201009, India.

Department of CSE, KIET Group of Institutions, Ghaziabad, 201206, India.

出版信息

Interdiscip Sci. 2025 Jun 5. doi: 10.1007/s12539-025-00718-2.

Abstract

The medical field uses Magnetic Resonance Imaging (MRI) as an essential diagnostic tool which provides doctors non-invasive images of brain structures and pathological conditions. Brain tumor detection stands as a vital application that needs specific and effective approaches for both medical diagnosis and treatment procedures. The challenges from manual examination of MRI scans stem from inconsistent tumor features including heterogeneity and irregular dimensions which results in inaccurate assessments of tumor size. To address these challenges, this paper proposes an Automated Classification and Grading Diagnosis Model (ACGDM) using MRI images. Unlike conventional methods, ACGDM introduces a Multi-Scale Graph Neural Network (MSGNN), which dynamically captures hierarchical and multi-scale dependencies in MRI data, enabling more accurate feature representation and contextual analysis. Additionally, the Spatio-Temporal Transformer Attention Mechanism (STTAM) effectively models both spatial MRI patterns and temporal evolution by incorporating cross-frame dependencies, enhancing the model's sensitivity to subtle disease progression. By analyzing multi-modal MRI sequences, ACGDM dynamically adjusts its focus across spatial and temporal dimensions, enabling precise identification of salient features. Simulations are conducted using Python and standard libraries to evaluate the model on the BRATS 2018, 2019, 2020 datasets and the Br235H dataset, encompassing diverse MRI scans with expert annotations. Extensive experimentation demonstrates 99.8% accuracy in detecting various tumor types, showcasing its potential to revolutionize diagnostic practices and improve patient outcomes.

摘要

医学领域将磁共振成像(MRI)用作一种重要的诊断工具,它能为医生提供脑部结构和病理状况的无创图像。脑肿瘤检测是一项至关重要的应用,在医学诊断和治疗过程中都需要特定且有效的方法。对MRI扫描进行人工检查面临的挑战源于肿瘤特征不一致,包括异质性和不规则尺寸,这导致对肿瘤大小的评估不准确。为应对这些挑战,本文提出了一种使用MRI图像的自动分类和分级诊断模型(ACGDM)。与传统方法不同,ACGDM引入了多尺度图神经网络(MSGNN),它能动态捕捉MRI数据中的分层和多尺度依赖性,实现更准确的特征表示和上下文分析。此外,时空Transformer注意力机制(STTAM)通过纳入跨帧依赖性,有效地对空间MRI模式和时间演变进行建模,增强了模型对细微疾病进展的敏感性。通过分析多模态MRI序列,ACGDM在空间和时间维度上动态调整其关注点,从而能够精确识别显著特征。使用Python和标准库进行了模拟,以在BRATS 2018、2019、2020数据集以及Br235H数据集上评估该模型,这些数据集包含了带有专家注释的各种MRI扫描。大量实验表明,在检测各种肿瘤类型时,该模型的准确率达到了99.8%,展示了其革新诊断实践和改善患者治疗效果的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验