Mutakabbir Khan Md, Jasim Uddin Md
Department of Mathematics, University of Dhaka, Dhaka, Dhaka, Bangladesh.
PLoS One. 2025 Jun 5;20(6):e0324299. doi: 10.1371/journal.pone.0324299. eCollection 2025.
This study explores a novel two-dimensional discrete-time ratio-dependent Holling-Tanner predator-prey model, incorporating the impact of the Fear effect on the prey population. The study focuses on identifying stationary points and analyzing bifurcations around the positive fixed point, with an emphasis on their biological significance. Our examination of bifurcations at the interior fixed point uncovers a variety of generic bifurcations, including one-parameter bifurcations, period-doubling, and Neimark-Sacker bifurcations. To further understand NS bifurcation, we establish non-degeneracy condition. The system's bifurcating and fluctuating behavior is managed using Ott-Grebogi-Yorke (OGY) control technique. From an ecological perspective, these findings underscore the substantial role of the Fear effect in shaping predator-prey dynamics. The research is extended to a networked context, where interconnected prey-predator populations demonstrate the influence of coupling strength and network structure on the system's dynamics. The theoretical results are validated through numerical simulations, which encompass local dynamical classifications, calculations of maximum Lyapunov exponents, phase portrait analyses, and bifurcation diagrams.
本研究探索了一种新颖的二维离散时间比率依赖型霍林 - 坦纳捕食者 - 猎物模型,纳入了恐惧效应对猎物种群的影响。该研究着重于确定平衡点,并分析围绕正平衡点的分岔情况,重点关注其生物学意义。我们对内部平衡点处的分岔进行研究,发现了多种一般分岔,包括单参数分岔、倍周期分岔和奈马克 - 萨克分岔。为了进一步理解奈马克 - 萨克分岔,我们建立了非退化条件。使用奥特 - 格雷博吉 - 约克(OGY)控制技术来管理系统的分岔和波动行为。从生态学角度来看,这些发现强调了恐惧效应在塑造捕食者 - 猎物动态中的重要作用。该研究扩展到网络环境,其中相互连接的捕食者 - 猎物种群展示了耦合强度和网络结构对系统动态的影响。通过数值模拟验证了理论结果,这些模拟包括局域动力学分类、最大李雅普诺夫指数计算、相图分析和分岔图。