Yu Baichao, Pei Chong, Peng Wenjun, Zheng Yongkun, Fu Ying, Wang Xueqi, Wang Wenjun, Wang Zhiqiang, Chen Yong, Wang Qi, Zhuma Kameina, Gao Yiyuan, Xing Yun, Jiao Mengxia, Liu Ronghua, Luo Feifei, Zhang Dan, Qie Jingbo, Yang Hui, Jin Meiling, Wang Luman, Chu Yiwei
Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Anhui Medical University, Hefei, China.
Signal Transduct Target Ther. 2025 Jun 6;10(1):181. doi: 10.1038/s41392-025-02263-2.
Gut microbiota-derived short-chain fatty acids (SCFAs) impact asthma outcomes, highlighting the importance of understanding the disease mechanisms through the gut-lung axis. In this study, we identified that among SCFAs, butyrate uniquely alleviates asthma through specifically inhibiting a newly identified pathogenic T follicular helper (Tfh) cell subset, Tfh13 cells. Tfh13 cell depletion (Il13Bcl6) or adoptive transfer of Tfh13 cells in an OVA-induced asthma model conclusively demonstrated their indispensable role in driving anaphylactic IgE production and asthma pathogenesis. Mechanistically, the inhibitory function of butyrate on Tfh13 cells is mediated by the interaction between butyrate and G-protein coupled receptor 43 (GPR43), leading to the suppression of p38 MAPK/NF-κB signaling in Tfh13 cells. To address the clinically observed deficiency of butyrate in patients with asthma and recapitulated in murine models, we developed a novel therapeutic strategy using a butyrate-yielding diet enriched with butylated high amylose maize starch (HAMSB). Remarkably, supplementation with HAMSB diet in murine and humanized asthma models significantly reduced Tfh13 cell frequencies and anaphylactic IgE levels, leading to significantly improved disease outcomes. Our findings not only unveil a novel mechanism underlying butyrate-mediated asthma alleviation, termed the butyrate-Tfh13-IgE axis, but also propose a clinically translatable dietary intervention strategy targeting microbial metabolites for stopping asthma.
肠道微生物群衍生的短链脂肪酸(SCFAs)会影响哮喘的病情转归,这凸显了通过肠-肺轴了解疾病机制的重要性。在本研究中,我们发现,在短链脂肪酸中,丁酸盐通过特异性抑制新发现的致病性滤泡辅助性T(Tfh)细胞亚群——Tfh13细胞,独特地减轻了哮喘症状。在卵清蛋白诱导的哮喘模型中,去除Tfh13细胞(Il13Bcl6)或过继转移Tfh13细胞,最终证明了它们在驱动过敏性IgE产生和哮喘发病机制中不可或缺的作用。从机制上讲,丁酸盐对Tfh13细胞的抑制功能是由丁酸盐与G蛋白偶联受体43(GPR43)之间的相互作用介导的,从而导致Tfh13细胞中p38丝裂原活化蛋白激酶/核因子κB信号传导受到抑制。为了解决临床上观察到的哮喘患者丁酸盐缺乏问题(在小鼠模型中也得到了再现),我们开发了一种新的治疗策略,即使用富含丁基化高直链玉米淀粉(HAMSB)的产丁酸盐饮食。值得注意的是,在小鼠和人源化哮喘模型中补充HAMSB饮食可显著降低Tfh13细胞频率和过敏性IgE水平,从而显著改善疾病转归。我们的研究结果不仅揭示了丁酸盐介导哮喘缓解的一种新机制,即丁酸盐-Tfh13-IgE轴,还提出了一种针对微生物代谢产物的可临床转化的饮食干预策略来阻止哮喘。
Signal Transduct Target Ther. 2025-6-6
Pediatr Allergy Immunol. 2019-7-9
Biochem Biophys Res Commun. 2020-12-10
Cell Metab. 2023-11-7
J Allergy Clin Immunol Glob. 2023-8-13