Suppr超能文献

构建基于深度学习的预测模型以评估机械拉伸刺激对成纤维细胞中MMP-2基因表达水平的影响。

Construction of a deep learning-based predictive model to evaluate the influence of mechanical stretching stimuli on MMP-2 gene expression levels in fibroblasts.

作者信息

Xiao Ruozu, Zhou Haowei, Shi Zhen, Huang Rong, Zhang Yuheng, Li Jing

机构信息

Department of Burns and Plastic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.

Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China.

出版信息

Biomed Eng Online. 2025 Jun 5;24(1):71. doi: 10.1186/s12938-025-01399-0.

Abstract

BACKGROUND

Matrix metalloproteinase-2 (MMP-2) secretion homeostasis, governed by the multifaceted interplay of skin stretching, is a pivotal determinant influencing wound healing dynamics. This investigation endeavors to devise an artificial intelligence (AI) prediction framework delineating the modulation of MMP-2 expression under stretching conditions, thereby unravelling profound insights into the mechanobiological orchestration of MMP-2 secretion and fostering novel mechanotherapeutic strategies targeted at MMP-2 modulation.

METHODS

Employing a bespoke mechanical tensile loading apparatus, diverse mechanical tensile stimuli were administered to fibroblasts, with parameters such as tensile shape and frequency duration constituting the mechanical loading regimen. Furthermore, reverse transcription polymerase chain reaction (RT‒PCR) assays were conducted to measure MMP-2 gene expression levels in fibroblasts subjected to mechanical stretching. Subsequently, the resulting data were partitioned into training and validation cohorts at a 7:3 ratio, facilitating the development of the deep learning (DL) model via a back propagation neural network predicated on the training set. An external validation set was also curated by culling pertinent literature from the PubMed database to assess the predictive ability of the model.

RESULTS

Analysis of 336 data points related to MMP-2 gene expression via RT‒PCR corroborated the variability in MMP-2 gene expression levels in response to distinct mechanical stretching regimens. Consequently, a DL model was successfully crafted via the backpropagation algorithm to delineate the impact of mechanical stretching stimuli on MMP-2 gene expression levels. The model, characterized by an R value of 0.73, evinced a commendable fit with the training data set, elucidating the intricate interplay between the input features and the target variable. Notably, the model exhibited minimal prediction errors, as evidenced by a root mean square error (RMSE) of 0.42 and a mean absolute error (MAE) of 0.28. Furthermore, the model showcased robust generalization capabilities during validation, yielding R values of 0.70 and 0.71 for the validation and external validation sets, respectively, revealing its predictive accuracy.

CONCLUSIONS

The DL model fashioned through the backpropagation algorithm adeptly forecasts the impact of mechanical stretching stimuli on MMP-2 gene expression levels in fibroblasts with relative precision. These findings provide a foundation for the modulation of MMP homeostasis via mechanical stretching to expedite the healing of recalcitrant chronic refractory wound (CRW).

摘要

背景

基质金属蛋白酶-2(MMP-2)的分泌稳态受皮肤拉伸的多方面相互作用调控,是影响伤口愈合动态的关键决定因素。本研究旨在设计一种人工智能(AI)预测框架,描绘拉伸条件下MMP-2表达的调节情况,从而深入了解MMP-2分泌的机械生物学调控,并促进针对MMP-2调节的新型机械治疗策略的发展。

方法

使用定制的机械拉伸加载装置,对成纤维细胞施加不同的机械拉伸刺激,拉伸形状和频率持续时间等参数构成机械加载方案。此外,进行逆转录聚合酶链反应(RT-PCR)测定,以测量经受机械拉伸的成纤维细胞中MMP-2基因的表达水平。随后,将所得数据按7:3的比例划分为训练和验证队列,通过基于训练集的反向传播神经网络促进深度学习(DL)模型的开发。还通过从PubMed数据库筛选相关文献来构建外部验证集,以评估模型的预测能力。

结果

通过RT-PCR对336个与MMP-2基因表达相关的数据点进行分析,证实了MMP-2基因表达水平在不同机械拉伸方案下的变异性。因此,通过反向传播算法成功构建了一个DL模型,以描绘机械拉伸刺激对MMP-2基因表达水平的影响。该模型的R值为0.73,与训练数据集表现出良好的拟合度,阐明了输入特征与目标变量之间的复杂相互作用。值得注意的是,该模型的预测误差极小,均方根误差(RMSE)为0.42,平均绝对误差(MAE)为0.28。此外,该模型在验证过程中展现出强大的泛化能力,验证集和外部验证集的R值分别为0.70和0.71,显示出其预测准确性。

结论

通过反向传播算法构建的DL模型能够相对精确地预测机械拉伸刺激对成纤维细胞中MMP-2基因表达水平的影响。这些发现为通过机械拉伸调节MMP稳态以加速顽固性慢性难治性伤口(CRW)的愈合提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ad/12139300/e38f9ebecbb1/12938_2025_1399_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验