Yoval-Sánchez Belem, Guerrero Ivan, Chen Qiuying, Sosunov Sergei, Ansari Fariha, Siragusa Max, Konrad Csaba, Niatsetskaya Zoya, Stepanova Anna, Starkov Anatoly A, Khruschev Sergei, Magrane Jordi, Nikitina Arina A, Bereshchenko Oxana, Zhou Ping, Zhou LiPing, Szibor Marten, Wittig Ilka, Manfredi Giovanni, Gross Steven S, Ten Vadim, Galkin Alexander
bioRxiv. 2025 May 23:2025.05.19.650489. doi: 10.1101/2025.05.19.650489.
Mitochondrial metabolic flux alterations are critical drivers of acute ischemia-reperfusion (IR) brain injury. Reverse electron transfer (RET), defined as the upstream flow of electrons from the quinone pool to complex I, is a major source of pathological reactive oxygen species (ROS) under stress conditions. Using an model of brain IR, we show that RET-supporting substrates - succinate and glycerol 3-phosphate - accumulate during oxygen deprivation. Rapid oxidation of these substrates by brain mitochondria upon reoxygenation drives massive ROS production, while also leading to over-reduction and dissociation of the complex I flavin mononucleotide (FMN) cofactor. The resulting FMN-deficient complex I becomes catalytically impaired, unable to oxidize NADH or to produce ROS. To mitigate RET and preserve complex I function, we used transgenic mice xenotopically expressing alternative oxidase (AOX). This enzyme bypasses complexes III and IV by directly oxidizing the reduced quinone pool and passing electrons onto molecular oxygen. AOX expression did not alter complex I abundance, supercomplexes assembly, or basal respiration rates, but effectively diverted electrons from the quinone pool, decreasing RET flux via complex I and limiting ROS generation during IR. This attenuation of RET preserved complex I FMN binding, suppressed oxidative stress, and conferred neuroprotection . Our findings reveal a novel strategy for rewiring mitochondrial electron flux to mitigate initial IR brain injury, highlighting modulation of the quinone pool by AOX as a potential therapeutic strategy for IR.
线粒体代谢通量改变是急性缺血再灌注(IR)脑损伤的关键驱动因素。逆向电子传递(RET),定义为电子从醌池向上游流向复合体I,是应激条件下病理性活性氧(ROS)的主要来源。利用脑IR模型,我们发现支持RET的底物——琥珀酸和3-磷酸甘油——在缺氧期间积累。复氧后脑线粒体对这些底物的快速氧化驱动大量ROS产生,同时还导致复合体I黄素单核苷酸(FMN)辅因子过度还原和解离。由此产生的缺乏FMN的复合体I催化功能受损,无法氧化NADH或产生活性氧。为了减轻RET并保留复合体I的功能,我们使用了异位表达交替氧化酶(AOX)的转基因小鼠。这种酶通过直接氧化还原的醌池并将电子传递给分子氧,绕过复合体III和IV。AOX的表达没有改变复合体I的丰度、超复合体组装或基础呼吸速率,但有效地将电子从醌池转移,降低了通过复合体I的RET通量,并限制了IR期间的ROS生成。RET的这种减弱保留了复合体I的FMN结合,抑制了氧化应激,并赋予了神经保护作用。我们的研究结果揭示了一种重新连接线粒体电子通量以减轻初始IR脑损伤的新策略,突出了AOX对醌池的调节作为IR的一种潜在治疗策略。