Wei Zhuang, Chen Jiji, Leapman Richard D
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
bioRxiv. 2025 May 19:2025.05.16.653525. doi: 10.1101/2025.05.16.653525.
This study developed a new Cellular Omics-Structural Integration (COSI) technology platform to address the limitation of traditional technologies in simultaneously obtaining gene expression profiles and super-resolution cellular structural information at the single-cell level. The platform comprises three core functional modules: (1) a single-cell transcriptomics and super-resolution fluorescence microscopy integration module that enables simultaneous acquisition of gene expression profiles and super-resolution fluorescence images at the single-cell level; (2) an electron microscopy and super-resolution fluorescence microscopy integration module with deep learning resolution enhancement that further gives fluorescence image high resolution features; and (3) a comprehensive analysis module that integrates transcriptomic data with enhanced super-resolution morphological data. Application of this technology to primary liver sinusoidal endothelial cells successfully achieved efficient matching and analysis of ultrastructural information and gene transcription data at the single-cell level, revealing associations between specific genes and endothelial cell fenestration formation. Through correlation analysis and multivariate statistical methods, we identified specific gene sets associated with fenestration number and average area. Validation in published non-alcoholic steatohepatitis (NASH) and diabetic mouse models demonstrated that these gene sets can effectively assess disease status and drug intervention efficacy, with fenestration number-related gene sets showing significant reduction in NASH and time-dependent changes in response to diabetes treatments. These findings not only expand our understanding of the mechanisms underlying liver and kidney endothelial cell fenestration formation but also provide novel molecular markers and potential therapeutic targets for early diagnosis and treatment evaluation of metabolic diseases. As a fundamental research tool, COSI technology fills critical gaps in existing spatial omics and cellular biology research, particularly for studying cellular structures lacking specific markers, and demonstrates significant potential for clinical applications in chronic metabolic diseases.
本研究开发了一种新的细胞组学 - 结构整合(COSI)技术平台,以解决传统技术在单细胞水平上同时获取基因表达谱和超分辨率细胞结构信息方面的局限性。该平台包括三个核心功能模块:(1)单细胞转录组学与超分辨率荧光显微镜整合模块,能够在单细胞水平上同时获取基因表达谱和超分辨率荧光图像;(2)具有深度学习分辨率增强功能的电子显微镜与超分辨率荧光显微镜整合模块,进一步赋予荧光图像高分辨率特征;(3)一个综合分析模块,将转录组数据与增强的超分辨率形态学数据整合在一起。将该技术应用于原代肝窦内皮细胞,成功在单细胞水平上实现了超微结构信息与基因转录数据的高效匹配和分析,揭示了特定基因与内皮细胞窗孔形成之间的关联。通过相关性分析和多变量统计方法,我们确定了与窗孔数量和平均面积相关的特定基因集。在已发表的非酒精性脂肪性肝炎(NASH)和糖尿病小鼠模型中的验证表明,这些基因集可以有效地评估疾病状态和药物干预效果,与窗孔数量相关的基因集在NASH中显著减少,并随糖尿病治疗呈现时间依赖性变化。这些发现不仅扩展了我们对肝肾内皮细胞窗孔形成机制的理解,还为代谢疾病的早期诊断和治疗评估提供了新的分子标志物和潜在治疗靶点。作为一种基础研究工具,COSI技术填补了现有空间组学和细胞生物学研究中的关键空白,特别是对于研究缺乏特定标记物的细胞结构,并在慢性代谢疾病的临床应用中显示出巨大潜力。