Mönkemöller Viola, Øie Cristina, Hübner Wolfgang, Huser Thomas, McCourt Peter
Biomolecular Photonics, Department of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
Faculty of Health Sciences, Department of Medical Biology, Vascular Biology Research Group, The Arctic University of Norway, 9037 Tromsø, Norway.
Sci Rep. 2015 Nov 9;5:16279. doi: 10.1038/srep16279.
Liver sinusoidal endothelial cells (LSECs) act as a filter between blood and the hepatocytes. LSECs are highly fenestrated cells; they contain transcellular pores with diameters between 50 to 200 nm. The small sizes of the fenestrae have so far prohibited any functional analysis with standard and advanced light microscopy techniques. Only the advent of super-resolution optical fluorescence microscopy now permits the recording of such small cellular structures. Here, we demonstrate the complementary use of two different super-resolution optical microscopy modalities, 3D structured illumination microscopy (3D-SIM) and single molecule localization microscopy in a common optical platform to obtain new insights into the association between the cytoskeleton and the plasma membrane that supports the formation of fenestrations. We applied 3D-SIM to multi-color stained LSECs to acquire highly resolved overviews of large sample areas. We then further increased the spatial resolution for imaging fenestrations by single molecule localization microscopy applied to select small locations of interest in the same sample on the same microscope setup. We optimized the use of fluorescent membrane stains for these imaging conditions. The combination of these techniques offers a unique opportunity to significantly improve studies of subcellular ultrastructures such as LSEC fenestrations.
肝窦内皮细胞(LSECs)在血液与肝细胞之间起到过滤器的作用。LSECs是高度有窗孔的细胞;它们含有直径在50至200纳米之间的跨细胞孔。迄今为止,窗孔的小尺寸使得无法使用标准和先进的光学显微镜技术进行任何功能分析。只有超分辨率光学荧光显微镜的出现,现在才使得记录这种微小的细胞结构成为可能。在这里,我们展示了在一个通用光学平台上两种不同的超分辨率光学显微镜模式,即三维结构照明显微镜(3D-SIM)和单分子定位显微镜的互补使用,以获得关于支持窗孔形成的细胞骨架与质膜之间关联的新见解。我们将3D-SIM应用于多色染色的LSECs,以获取大样本区域的高分辨率概览。然后,我们通过将单分子定位显微镜应用于在同一显微镜设置下选择同一样本中感兴趣的小位置,进一步提高了对窗孔成像的空间分辨率。我们针对这些成像条件优化了荧光膜染料的使用。这些技术的结合提供了一个独特的机会,可显著改进对诸如LSEC窗孔等亚细胞超微结构的研究。