Suppr超能文献

火山爆发与全球海底电信网络。

Volcanic eruptions and the global subsea telecommunications network.

作者信息

Clare Michael A, Yeo Isobel A, Nash Jacob, Hunt James E, Panuve Semisi, Wilkie Alasdair, Williams Rebecca, Dowey Natasha, Rowley Peter, Barclay Jennifer, Phillips Jeremy, Scarlett Jazmin, Engwell Samantha, Henstock Timothy J, Seabrook Sarah, Watson Sally, Wysoczanski Richard, Ribo Marta, Cronin Shane, Talling Peter J, Cassidy Michael, Watt Sebastian, Robertson Richard

机构信息

Marine Geoscience, National Oceanography Centre, Southampton, UK.

School of Ocean and Earth Science, University of Southampton, Southampton, UK.

出版信息

Bull Volcanol. 2025;87(6):51. doi: 10.1007/s00445-025-01832-1. Epub 2025 Jun 4.

Abstract

UNLABELLED

When the first transoceanic telegraph cables were laid in the mid-1800s, rapid communication between continents became possible. The advent of fibre-optic submarine cables in the 1990s catalyzed a global digital revolution. Today, a network of > 1.7 million kilometres of fibre-optic cables crosses the oceans, carrying more than 99% of all digital data traffic worldwide and trillions of dollars in financial transactions. These arteries of the global internet underpin many aspects of our daily lives, and are particularly important for remote island communities that rely on submarine cables for telemedicine, e-commerce, and online education. However, these same remote communities are often in seismically and volcanically active regions and can be prone to natural hazards that threaten their critical subsea communication infrastructure. This vulnerability was acutely exposed in January 2022, when the collapse of the eruption plume of Hunga Volcano triggered fast-moving density currents that damaged Tonga's only international submarine cable, cutting off an entire nation from global communications in the midst of a volcanic crisis. Here, we present a new comprehensive analysis of damage to subsea communications cables by volcanic events from around the world, and document their diverse impacts. Examples include (i) severing of the telegraph cable crossing the Sunda Strait by a tsunami triggered by the 1883 Krakatau eruption, Indonesia; (ii) ocean-entering pyroclastic density currents, lahars, and landslides during the 1902 eruptions of Mount Pelée, Martinique, that damaged six telegraph cables; (iii) destruction of a cable landing station on Montserrat by a pyroclastic density current in 1997; (iv) submarine slope failure at Kick 'em Jenny, Grenada, that damaged two fibre-optic cables; (v) complete loss of the telecommunications network due to power outages following the 2000 eruption of Miyake-jima, Japan; and (vi) disruption to subsea cables resulting from the 2021 eruption of La Soufrière, St. Vincent. We find that the causes of damage typically relate to secondary hazards that occur not only at the same time as the eruption climax, but also some time after. There does not appear to be an explosivity intensity threshold for cable-damaging events; however, the extent of damage may be related to the original volcano morphology (e.g. steep slopes), spatial location (e.g. near the coast or partially/totally submerged), the eruption size or explosivity, and/or volcanic depositional processes involved. Based on these diverse case studies, we present lessons learned for enhancing telecommunications resilience, and discuss how subsea cables themselves can be used as sensors to improve understanding and early warning of volcanic hazards, potentially filling a monitoring gap for remote island communities.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s00445-025-01832-1.

摘要

未标注

19世纪中叶,当第一条跨洋电报电缆铺设完成时,各大洲之间的快速通信成为可能。20世纪90年代光纤海底电缆的出现催化了一场全球数字革命。如今,一个长度超过170万公里的光纤电缆网络横跨各大洋,承载着全球超过99%的数字数据流量以及数万亿美元的金融交易。这些全球互联网的“动脉”支撑着我们日常生活的许多方面,对于依赖海底电缆进行远程医疗、电子商务和在线教育的偏远岛屿社区尤为重要。然而,这些偏远社区往往位于地震和火山活动频繁的地区,容易受到威胁其关键海底通信基础设施的自然灾害影响。这种脆弱性在2022年1月被尖锐地暴露出来,当时洪阿火山喷发柱的坍塌引发了快速移动的密度流,损坏了汤加唯一的国际海底电缆,使整个国家在火山危机期间与全球通信隔绝。在此,我们对世界各地火山事件对海底通信电缆造成的损害进行了新的全面分析,并记录了它们的不同影响。例子包括:(i)1883年印度尼西亚喀拉喀托火山喷发引发的海啸切断了穿越巽他海峡的电报电缆;(ii)1902年马提尼克岛培雷火山喷发期间,进入海洋的火山碎屑密度流、火山泥流和山体滑坡损坏了六条电报电缆;(iii)1997年火山碎屑密度流摧毁了蒙特塞拉特岛的一个电缆登陆站;(iv)格林纳达“踢你珍妮”海底斜坡失稳,损坏了两条光纤电缆;(v)2000年日本御岳山火山喷发后,停电导致电信网络完全瘫痪;(vi)2021年圣文森特苏弗里耶尔火山喷发对海底电缆造成干扰。我们发现,损害的原因通常与不仅在火山喷发高潮时同时发生,而且在之后一段时间也会出现的次生灾害有关。似乎不存在电缆损坏事件的爆炸强度阈值;然而,损害程度可能与原始火山形态(如陡坡)、空间位置(如靠近海岸或部分/完全淹没)、喷发规模或爆炸力以及/或者所涉及的火山沉积过程有关。基于这些多样的案例研究,我们提出了增强电信恢复力的经验教训,并讨论了如何将海底电缆本身用作传感器,以提高对火山灾害的理解和早期预警,这可能填补偏远岛屿社区的监测空白。

补充信息

在线版本包含可在10.1007/s00445-025-** **01832-1获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/714d/12133983/5b1bef8f5413/445_2025_1832_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验