Wang Yuejiao, Zeng Dajun Daniel, Zhang Qingpeng, Zhao Pengfei, Wang Xiaoli, Wang Quanyi, Luo Yin, Cao Zhidong
The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
Fundam Res. 2021 Aug 8;2(2):311-320. doi: 10.1016/j.fmre.2021.07.007. eCollection 2022 Mar.
Multivariate time series prediction of infectious diseases is significant to public health, and the deep learning method has attracted increasing attention in this research field.
An adaptively temporal graph convolution (ATGCN) model, which learns the contact patterns of multiple age groups in a graph-based approach, was proposed for COVID- 19 and influenza prediction. We compared ATGCN with autoregressive models, deep sequence learning models, and experience- based ATGCN models in short-term and long-term prediction tasks.
Results showed that the ATGCN model performed better than the autoregressive models and the deep sequence learning models on two datasets in both short-term (12.5% and 10% improvements on RMSE) and long-term (12.4% and 5% improvements on RMSE) prediction tasks. And the RMSE of ATGCN predictions fluctuated least in different age groups of COVID- 19 (0.029 ± 0.003) and influenza (0.059±0.008). Compared with the Ones-ATGCN model or the Pre-ATGCN model, the ATGCN model was more robust in performance, with RMSE of 0.0293 and 0.06 on two datasets when horizon is one.
Our research indicates a broad application prospect of deep learning in the field of infectious disease prediction. Transmission characteristics and domain knowledge of infectious diseases should be further applied to the design of deep learning models and feature selection.
The ATGCN model addressed the multivariate time series forecasting in a graph-based deep learning approach and achieved robust prediction on the confirmed cases of multiple age groups, indicating its great potentials for exploring the implicit interactions of multivariate variables.
传染病的多变量时间序列预测对公共卫生具有重要意义,深度学习方法在该研究领域已引起越来越多的关注。
提出了一种自适应时间图卷积(ATGCN)模型,该模型以基于图的方法学习多个年龄组的接触模式,用于预测新冠病毒病和流感。我们在短期和长期预测任务中,将ATGCN与自回归模型、深度序列学习模型以及基于经验的ATGCN模型进行了比较。
结果表明,在两个数据集的短期(均方根误差[RMSE]分别提高12.5%和10%)和长期(RMSE分别提高12.4%和5%)预测任务中,ATGCN模型的表现优于自回归模型和深度序列学习模型。并且,ATGCN预测的RMSE在新冠病毒病(0.029±0.003)和流感(0.059±0.008)的不同年龄组中波动最小。与单时刻ATGCN模型或预ATGCN模型相比,ATGCN模型在性能上更稳健,当预测步长为1时,在两个数据集上的RMSE分别为0.0293和0.06。
我们的研究表明深度学习在传染病预测领域具有广阔的应用前景。传染病的传播特征和领域知识应进一步应用于深度学习模型的设计和特征选择。
ATGCN模型以基于图的深度学习方法解决了多变量时间序列预测问题,并在多个年龄组的确诊病例上实现了稳健预测,表明其在探索多变量间隐含相互作用方面具有巨大潜力。