Luo Jiajia, Wang Xuan, Fan Xiaomao, He Yuxin, Du Xiangjun, Chen Yao-Qing, Zhao Yang
School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China.
BMC Public Health. 2025 Feb 1;25(1):408. doi: 10.1186/s12889-025-21618-6.
Accurate and timely monitoring of influenza prevalence is essential for effective healthcare interventions. This study proposes a graph neural network (GNN)-based method to address the issue of cross-regional connectivity in predicting influenza outbreaks, aiming to achieve real-time and accurate influenza prediction.
We proposed a GNN-based approach with dual topology processing, capturing both geographical and socio-economic associations among counties/cities. The model inputs consist of weekly matrices of influenza-like illness (ILI) rates at city level, along with geographical topology and functional topology. The model construction involves temporal feature extraction through 1-dimensional gated causal convolution, spatial feature embedding through graph convolution, and additional adjustments to enhance spatiotemporal interaction exploration. Evaluation metrics include four commonly used measures: root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and Pearson correlation (Corr).
Our approach for predicting influenza outbreaks achieves competitive performance on real-world datasets (Corr = 0.8202; RMSE = 0.0017; MAE = 0.0013; MAPE = 0.0966), surpassing established baselines. Notably, our approach exhibits excellent capability in accurately and timely capturing short-term influenza outbreaks during the flu season, outperforming competitors across all evaluation metrics.
The incorporation of dual topology processing and the subsequent fusion mechanism allows the model to explore in-depth spatiotemporal feature interactions. Demonstrating superior performance, our approach shows great potential in early detection of flu trends for facilitating public health decisions and resource optimization.
准确及时地监测流感流行情况对于有效的医疗干预至关重要。本研究提出一种基于图神经网络(GNN)的方法,以解决预测流感爆发时的跨区域连通性问题,旨在实现实时准确的流感预测。
我们提出了一种基于GNN的双拓扑处理方法,捕捉县/市之间的地理和社会经济关联。模型输入包括城市层面流感样疾病(ILI)率的每周矩阵,以及地理拓扑和功能拓扑。模型构建包括通过一维门控因果卷积进行时间特征提取、通过图卷积进行空间特征嵌入,以及进行额外调整以增强时空交互探索。评估指标包括四种常用度量:均方根误差(RMSE)、平均绝对百分比误差(MAPE)、平均绝对误差(MAE)和皮尔逊相关系数(Corr)。
我们预测流感爆发的方法在真实世界数据集上取得了有竞争力的性能(Corr = 0.8202;RMSE = 0.0017;MAE = 0.0013;MAPE = 0.0966),超过了既定的基线。值得注意的是,我们的方法在流感季节准确及时地捕捉短期流感爆发方面表现出卓越能力,在所有评估指标上均优于竞争对手。
双拓扑处理和后续融合机制的结合使模型能够深入探索时空特征交互。我们的方法表现出卓越性能,在早期检测流感趋势以促进公共卫生决策和资源优化方面显示出巨大潜力。